Preferred Language
Articles
/
cobAf4YBIXToZYALhIwf
SUGGESTING MULTIPHASE REGRESSION MODEL ESTIMATION WITH SOME THRESHOLD POINT
...Show More Authors

The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of this paper is to suggest a new hybrid estimator obtained by an ad-hoc algorithm which relies on data driven strategy that overcomes outliers. While the minor goal is to introduce a new employment of an unweighted estimation method named "winsorization" which is a good method to get robustness in regression estimation via special technique to reduce the effect of the outliers. Another specific contribution in this paper is to suggest employing "Kernel" function as a new weight (in the scope of the researcher's knowledge).Moreover, two weighted estimations are based on robust weight functions named "Cauchy" and "Talworth". Simulations have been constructed with contamination levels (0%, 5%, and 10%) which associated with sample sizes (n=40,100). Real data application showed the superior performance of the suggested method compared with other methods using RMSE and R2 criteria.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
SMS Spam Detection Using Multiple Linear Regression and Extreme Learning Machines
...Show More Authors

     With the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper,  presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Feb 12 2016
Journal Name
International Journal Of Advanced Statistics And Probability
Two fixed point theorems in generalized metric spaces
...Show More Authors

<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>

View Publication
Crossref
Publication Date
Tue Mar 12 2019
Journal Name
Al-khwarizmi Engineering Journal
Die Design of Flexible Multi-Point Forming Process
...Show More Authors

Multi-point forming (MPF) is an advanced flexible manufacture technology, and the technology results from the idea that the whole die is separated into small punches that can be adjusted height. This idea is applied to the traditional rigid blank-holder, so flexible blank-holder (FBH) idea can be obtained. In this work, the performance of a multi-point die is investigated with pins in square matrix and suitable blank holder. Each pin in the punch holder can be a significant moved according to the die high and at different load that applied with spring with respect to spring stiffness. The results shows the reduction in setting time with respect to traditional single point incremental forming process that lead to (90%). and also show duri

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Crude Oil Price Forecasts Using Support Vector Regression and Technical Indicators
...Show More Authors

Oil price forecasting has captured the attention of both researchers and academics because of the unique characteristics of crude oil prices and how they have a big impact on a lot of different parts of the economic value of the product. As a result, most academics use a lot of different ways to predict the future. On the other hand, researchers have a hard time because crude oil prices are very unpredictable and can be affected by many different things. This study uses support vector regression (SVR) with technical indicators as a feature to improve the prediction of the monthly West Texas Intermediate (WTI) price of crude oil. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) measur

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Some Transformation Properties with Omitted Value
...Show More Authors

     The purpose of this  paper is to show that for a holomorphic and univalent function in class S, an omitted –value transformation  yields a class of starlike functions as a rotation transformation of  the Koebe function, allowing both the image and rotation of the function

   to be connected. Furthermore, these functions have several properties that are not far from a convexity properties. We also show that Pre- Schwarzian derivative is not invariant since the convexity property of the function   is so weak.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Mar 03 2009
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of repetitive estimation methodsSelf-data
...Show More Authors

In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation)  structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of  these procedures and compare them using generated data.

View Publication Preview PDF
Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Shigellosis Bacteria disease Model with Awareness Effects
...Show More Authors

In this paper, a mathematical model is proposed and studied to describe the spread of shigellosis disease in the population community. We consider it divided into four classes namely: the 1st class consists of  unaware susceptible individuals, 2nd class of infected individuals, 3rd class of aware susceptible individuals and 4th class are people carrying bacteria. The solution existence, uniqueness as well as bounded-ness are discussed for the shigellosis model proposed. Also, the stability analysis has been conducted for all possible equilibrium points. Finally the proposed model is studied numerically to prove the analytic results and discussing the effects of the external sources for dis

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison between the estimated of nonparametric methods by using the methodology of quantile regression models
...Show More Authors

This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them

Scopus