Preferred Language
Articles
/
coa6U4YBIXToZYALQILB
Theoretical and experimental investigation of a heat pipe heat exchanger for energy recovery of exhaust air
...Show More Authors

Heat pipes and two‐phase thermosyphon systems are passive heat transfer systems that employ a two‐phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as airconditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air‐to‐air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22m3/h, evaporator inlet‐air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady‐state operation, a mathematical model for heat‐transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet‐air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outletair temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inletair temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.

Scopus Clarivate Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Modeling and Optimization of Fatigue Life and Hardness of Carbon Steel CK35 under Dynamic Buckling
...Show More Authors

Abstract

 

The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP) and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8) experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resul

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Numerical and Experimental Investigations of the Effect of PVD and Vacuum Pressure on the Degree of Saturation
...Show More Authors

    Soft clays are generally characterized by low shear strength, low permeability and high compressibility. An effective method to accelerate consolidation of such soils is to use vertical drains along with vacuum preloading to encourage radial flow of water.  In this research numerical modeling of prefabricated vertical drains with vacuum pressure was done to investigate the effect of using vertical drains together with vacuum pressure on the degree of saturation of fully and saturated-unsaturated soft soils.  Laboratory experiments were conducted by using a specially-designed large consolidometer cell where a central drain was installed and vacuum pressure was applied. All tests were conducted

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Synergistic Interaction in the adsorbed mixed surfactants film of Sodium Dodecyl Sulfate and Cocamidopropyl Betaine on Liquid – Air Interfacial
...Show More Authors

In the present work, the critical micelle concentration (CMC) of the solution of Sodium dodecyl sulfate (SDS) as anionic surfactant, Cocamidopropyl Betaine (CAPB) as amphoteric surfactant, and their mixture have been determined using surface tension and conductivity measurements at a temperature range 293 -323 K. The adsorption and thermodynamic micellization parameters (?G?m, ?G?ads, ?max ,Amin,?cmc ) for individual surfactants was calculated. Rosen model which is focuses on the adsorbed mixed surfactant film at the air/solution interface was used to calculate the interaction parameter ( ?? ) at the interface and the activity coefficients g1 and g2. The results indicate that the CMC of the individual surfactants was affected by

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Chemical Methodologies
Novel Synthesis of Some N-Hydroxy Phthalimide Derivatives with Investigation of Its Corrosion Inhibition for Carbon Steel in HCl Solution
...Show More Authors

In the current study, new derivatives were synthesized by reaction of N-hydroxyphthalimide with chloro acetyl chloride in the presence of Et3N as a base to form 1,3-dioxoisoindolin-2-yl 2-chloroacetate (B1), which in turn enters several reactions with different amines where it interacts with primary amines to give 1,3-dioxoisoindolin-2-yl acetate derivatives (B2-B4) in basic medium, in the same way it interacts with these amines but with adding KNCS to form thiourea derivatives (B5-B7). It also reacts with diamines to give bis(azanediyl) derivatives (compounds B8-B10). The prepared derivatives were diagnosed using infrared FTIR and 1HNMR,13CNMR for some derivatives. Compounds B4, B5 and B9 were measured as corrosion inhibitors the inhibitio

... Show More
View Publication Preview PDF
Clarivate
Publication Date
Wed Mar 01 2023
Journal Name
Iraqi Journal Of Physics
Theoretical Computation of Electron Density in Laser-Induced Carbon Plasma using Anisimov Model
...Show More Authors

In this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Iraqi Journal Of Physics
Theoretical Computation of Electron Density in Laser-Induced Carbon Plasma using Anisimov Model
...Show More Authors

In this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in high distance

... Show More
Publication Date
Tue Nov 01 2011
Journal Name
Advanced Materials Research
Experimental Test of Magneto-Rheological Directional Control Valve
...Show More Authors

Directional control valve is the main part in hydraulic system which has complex construction, such as moving spool to control the direction of actuator for required speed. Utilizing MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper dedicates the experimental test of four ways, three position MR directional control valve. The experimental methods were done by connecting the MR directional control valve with hydraulic actuators. The experiment was conducted to show the principle work of the valve functionally and performance test for valve was done. The valve works proportionally to control the direction a

... Show More
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
An Experimental Analysis of Embankment on Stone Columns
...Show More Authors

When embankment is constructed on very soft soil, special construction methods are adopted. One of the techniques is a piled embankment. Piled (stone columns) embankments provide an economic and effective solution to the problem of constructing embankments over soft soils. This method can reduce settlements, construction time and cost. Stone columns provide an effective improvement method for soft soils under light structures such as rail or road embankments. The present work investigates the behavior of the embankment models resting on soft soil reinforced with stone columns. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios of the stone columns, in addition to different

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Experimental Evidence of Chaotic Resonance in Semiconductor Laser
...Show More Authors

In this paper, an experimental study has been conducted regarding the indication of resonance in chaotic semiconductor laser.  Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as inducing chaos and controlling chaos. Interesting results have been obtained regarding to the effect of the   chaotic resonance by adding the frequency on the systems. The frequency changes nonlinear dynamical system through a critical value, there is a transition from a periodic attractor to a strange attractor. The amplitude has a very relevant impact on the system, resulting in an optimal resonance response for appropriate values related to correlation time. The chaotic system becomes regular under

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Arab World English Journal
Pedagogical Stylistics as a Tool in the Classroom: An Investigation of EFL Undergraduate Students' Ability in Analyzing Poetic Language
...Show More Authors

.