Preferred Language
Articles
/
0RYv2YkBVTCNdQwCyo1e
Experimental Test of Magneto-Rheological Directional Control Valve
...Show More Authors

Directional control valve is the main part in hydraulic system which has complex construction, such as moving spool to control the direction of actuator for required speed. Utilizing MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper dedicates the experimental test of four ways, three position MR directional control valve. The experimental methods were done by connecting the MR directional control valve with hydraulic actuators. The experiment was conducted to show the principle work of the valve functionally and performance test for valve was done. The valve works proportionally to control the direction and speed of hydraulic actuators. As a result, the experimental result demonstrates the operation of MR directional control valve using two configurations. The experimental about ON-OFF and proportional operations is discussed. The MR directional control valve can replace many types of the spool directional control valve for controlling hydraulic actuator.

Scopus Clarivate Crossref
Publication Date
Sat May 21 2011
Journal Name
The International Journal Of Advanced Manufacturing Technology
Magneto-rheological directional control valve
...Show More Authors

The main part in hydraulic system is directional control valve. Directional control valve has complex construction such as moving spool to control the direction of actuator for required speed. Magneto-rheological (MR) fluid is one of controllable fluids. Utilizing the MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This study proposes the design of four ways/three position MR proportional directional control valve (4/3 MR valve). The construction of valve and the principle of work are presented. Analysis for magnetic circuit and simulation for valve performance were done. The experiment was conducted to show the principle

... Show More
View Publication
Scopus (29)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Innovation, Management And Technology
Intelligent Magneto-Rheological Fluid Directional Control Valve
...Show More Authors

There are many configurations of directional control valve. Directional control valve has complex construction, such as moving spool to control the direction of actuator and desired speed. Magneto-rheological (MR) fluid is one of controllable fluids. Utilizing the MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This paper presents the design of multi configuration MR directional control valve. The construction and the principle of work of the valve are presented. The experiment was conducted to show the working principle of the valve functionally. The valve worked proportionally to control the direction and speed of hydra

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Nov 01 2011
Journal Name
International Journal Of Mechanical And Materials Engineering
Simulation and design optimization of magneto rheological control valve
...Show More Authors

Magneto-rheological (MR) Valve is one of the devices generally used to control the speed of Hydraulic actuator using MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. The finite element analysis is carried out on this valve to optimize its design. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMM). The Model dimensions of MR valve, material properties and the circuit properties of valve coil are taken into account. The results of analysis are presented in terms of magnetic strength and magnetic flux density. The valve can be operated with variable flow rate by varying the current. It i

... Show More
View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Fri Nov 11 2011
Journal Name
Thesis
Performance Analysis of a New Compact Magneto-Rheological Proportional Control Valve for Hydraulic Actuation Using FEM and Experimental Approach
...Show More Authors

One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a

... Show More
Publication Date
Wed Dec 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Magnetorheological Normally Close Directional Control Valve: Magnetorheological normally close directional control valve
...Show More Authors

This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 26 2011
Journal Name
Journal Of Intelligent Material Systems And Structures
Design and modeling magnetorheological directional control valve
...Show More Authors

Directional control valves are designed to control direction of flow, while actuators maintain required speeds and precise positions. Magnetorheological (MR) fluid is a controllable fluid. Utilizing the MR fluid properties, direct interface between magnetic fields and fluid power is possible, without the need for mechanical moving parts like spools. This study proposes a design of a four-way three-position MR directional control valve, presents a method of building, and explains the working principle of the valve. An analysis of the design and finite elements using finite element method of magnetism (FEMM) software was performed on each valve. The magnetic circuit of the MR valve was analyzed and the performance was simulated. The

... Show More
View Publication
Scopus (27)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Wed Oct 20 2010
Journal Name
The International Journal Of Advanced Manufacturing Technology
Finite element modeling and simulation of proposed design magneto-rheological valve
...Show More Authors

Magneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef

... Show More
View Publication
Scopus (35)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Wed Dec 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Magnetorheological Normally Close Directional Control Valve
...Show More Authors

This valve is intended for use in valves for steering movement, using the qualities of the Magneto-rheological (MR) fluid to regulate the fluid, direct contact without the utilization of moving parts like a spool, a connection between electric flux, and fluid power was made, The simulation was done to employ the" finite element method of magnetism (FEMM)" to arrive at the best design. This software is used for magnetic resonance valve finite element analysis. The valve's best performance was obtained by using a closed directional control valve in the normal state normally closed (NC) MR valve, with simulation results revealing the optimum magnetic flux density in the absence of a current and the shedding condition, as well as the optimum pr

... Show More
Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
FEM analysis and design of permanent magnet disk type magneto-rheological (MR) valve
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Control of Omni-Directional Mobile Robot Motion
...Show More Authors

This paper presents the motion programming and control of omni-directional mobile robot through the process of building and programming a small robotic platform with secondary design criteria of modularity and simplified control. This is accomplished by combining the positive aspects of several different robotics platform ideas. The platform is shaped like an equilateral triangle with a servo motor, sensors, and omni-wheel, controlled by a PIC microcontroller.

      In this work the kinematics, inverse kinematics and dynamic module for the platform is derived. Two search algorithms (the wall-following search and the “most-open-area” search) is designed, tested, and analyzed experimentally.

View Publication Preview PDF