An Auto Crop method is used for detection and extraction signature, logo and stamp from the document image. This method improves the performance of security system based on signature, logo and stamp images as well as it is extracted images from the original document image and keeping the content information of cropped images. An Auto Crop method reduces the time cost associated with document contents recognition. This method consists of preprocessing, feature extraction and classification. The HSL color space is used to extract color features from cropped image. The k-Nearest Neighbors (KNN) classifier is used for classification.
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreSpeech is associated with all early term grammar - somewhat - talking about the beginnings of the emergence of grammar, its foundation, and the truth is that this period has remained obscure, what came of them was a novels dealt with a facilitator beginnings as, and this means that what was of grammatical terms in the period of the first generation of grammarians do not constitute in itself, but the initial harbingers of serious way as in the science, and the real beginning of the term grammar mature as orally were at Hebron and Sibawayh evident in the book, then the efforts of the grammarians available until after the term of grammar arrived to what it is .
In this area is (actor) a grammatical terminology, which won at the ancient s
The climate is one of the natural factors affecting agriculture, and the success of the cultivation of any agricultural crop depends on the nature of the prevailing climate in the area of its cultivation. If the main elements of climate: temperature, rain and humidity, affect the various agricultural activities that can be practiced, and the stages of growth of agricultural crops and also determine the areas of spread. When the climatic requirements of any crop are well available, its cultivation is successful and comfortable. The research starts from the problem of spatial variation of date production spatially in the study area and the reason for choosing dates because of its economic importance, so the research will be based on
... Show MoreExamination of skewness makes academics more aware of the importance of accurate statistical analysis. Undoubtedly, most phenomena contain a certain percentage of skewness which resulted to the appearance of what is -called "asymmetry" and, consequently, the importance of the skew normal family . The epsilon skew normal distribution ESN (μ, σ, ε) is one of the probability distributions which provide a more flexible model because the skewness parameter provides the possibility to fluctuate from normal to skewed distribution. Theoretically, the estimation of linear regression model parameters, with an average error value that is not zero, is considered a major challenge due to having difficulties, as no explicit formula to calcula
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show More