Surface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show MoreBACKGROUND: Sacral nerve stimulation (SNS) approved for use in North America since 1997 despite the fact that the concept of using SNS to treat patients with voiding dysfunction discussed first almost 50 years ago. AIM: The objectives of the study were to assess the effectiveness of SNS the short and long term for patients with overactive bladder (OAB) dysfunction and its relation to age, gender, and causes. PATIENTS AND METHODS: This is a clinical prospective study that involved 50 cases (32 females and 18 males) with OAB. It was carried out at Ibn Sina Hospital, and the neurosciences hospital in Baghdad/Iraq from April 2015 to April 2018. All the patients were assessed preoperatively and certain inclusion criteria were
... Show MoreThis investigation proposed an identification system of offline signature by utilizing rotation compensation depending on the features that were saved in the database. The proposed system contains five principle stages, they are: (1) data acquisition, (2) signature data file loading, (3) signature preprocessing, (4) feature extraction, and (5) feature matching. The feature extraction includes determination of the center point coordinates, and the angle for rotation compensation (θ), implementation of rotation compensation, determination of discriminating features and statistical condition. During this work seven essential collections of features are utilized to acquire the characteristics: (i) density (D), (ii) average (A), (iii) s
... Show More