Different injection material types were tried in the injection of soft clay, such as lime (L), silica fume (SF), and leycobond-h (LH). In this study, experiments were made to study the effect of injection on soft clay consolidation settlement. A sample of natural soft clayey soil was investigated in the laboratory and the sample was injected with each of the grout materials used, L, SF, L + SF, and L + SF + LH. A 20 cm3 of each slurry grout was conducted into the soil, which was compacted in California Bearing Ratio (CBR) mold and cured for 7 days, and then the sample was loaded to 80 N load by a circular steel footing 60 mm in diameter. The settlement was recorded. The sample of each slurry grout, which provided minimum settlement, was chosen (L + SF + LH). To reduce soft clay settlement before and after footing construction, four cases were investigated. The impact of injection hole spacing and grout depth was studied. It was discovered that injecting a slurry of (L + SF + LH) into the soft clay beneath or surrounding the footing increased bearing capacity by 5–88%. Due to the shape of shear failure of the soft clay around the footing, grouting near the footing at a distance of 0.5 diameter of the footing is more effective than grouting at a distance of 1.0 diameter of the footing, and grouting near the footing at a distance of 0.5 diameter of the footing is more effective than grouting at a distance of 1.0 diameter of the footing.
The study aims to discuss the relation between imported inflation and international trade of Iraqi economy for the period (1990-2015) by using annual data. To achieve the study aim, statistical and Econometrics methods are used through NARDL model to explain non-linear relation because it’s a model assigned to measure non-linear relations and as we know most economic relations are non-linear, beside explaining positive and negative effects of imported inflation, and to reach the research aim deductive approach was adopted through using descriptive method to describe and determine phenomenon. Beside the inductive approach by g statistical and standard tools to get the standard model explains the
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreIn this research the Empirical Bayes method is used to Estimate the affiliation parameter in the clinical trials and then we compare this with the Moment Estimates for this parameter using Monte Carlo stimulation , we assumed that the distribution of the observation is binomial distribution while the distribution with the unknown random parameters is beta distribution ,finally we conclude that the Empirical bayes method for the random affiliation parameter is efficient using Mean Squares Error (MSE) and for different Sample size .
The main parameter that drives oil industry contract investment and set up economic feasibility study for approving field development plan is hydrocarbon reservoir potential. So a qualified experience should be deeply afforded to correctly evaluate hydrocarbons reserve by applying different techniques at each phase of field management, through collecting and using valid and representative data sources, starting from exploration phase and tune-up by development phase. Commonly, volumetric calculation is the main technique for estimate reservoir potential using available information at exploration stage which is quite few data; in most cases, this technique estimate big figure of reserve. In this study
Researchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreThe Purpose of this study is mainly to improve the competitive position of products economic units using technique target cost and method reverse engineering and through the application of technique and style on one of the public sector companies (general company for vegetable oils) which are important in the detection of prices accepted in the market for items similar products and processing the problem of high cost which attract managerial and technical leadership to the weakness that need to be improved through the introduction of new innovative solutions which make appropriate change to satisfy the needs of consumers in a cheaper way to affect the decisions of private customer to buy , especially of purchase private economic units to
... Show MoreSurface electromyography (sEMG) and accelerometer (Acc) signals play crucial roles in controlling prosthetic and upper limb orthotic devices, as well as in assessing electrical muscle activity for various biomedical engineering and rehabilitation applications. In this study, an advanced discrimination system is proposed for the identification of seven distinct shoulder girdle motions, aimed at improving prosthesis control. Feature extraction from Time-Dependent Power Spectrum Descriptors (TDPSD) is employed to enhance motion recognition. Subsequently, the Spectral Regression (SR) method is utilized to reduce the dimensionality of the extracted features. A comparative analysis is conducted between the Linear Discriminant Analysis (LDA) class
... Show More