In this thesis, we study the topological structure in graph theory and various related results. Chapter one, contains fundamental concept of topology and basic definitions about near open sets and give an account of uncertainty rough sets theories also, we introduce the concepts of graph theory. Chapter two, deals with main concepts concerning topological structures using mixed degree systems in graph theory, which is M-space by using the mixed degree systems. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are defined and studied. In chapter three we study supra-approximation spaces using mixed degree systems and primary object in this chapter are two topological spaces, namely o-space and i-space. In chapter four we introduce two new approximation operators using mixed degree systems and comparing of them and we find the accuracy of the second new approximation operator is more thin the first new approximation operator. For reason we study in detail the properties of the second new operator. Finally, in chapter five we introduce new generalization of rough set theory using a finite number of graphs by using the second new approximation operators in the preiow chapter. Several characterizations and properties of these concepts are obtained.
In this paper, we show that each soft topological group is a strong small soft loop transfer space at the identity element. This indicates that the soft quasitopological fundamental group of a soft connected and locally soft path connected space, is a soft topological group.
In this paper, new concepts of maximal and minimal regular s are introduced and discussed. Some basic properties are obtained. The relation between maximal and minimal regular s and some other types of open sets such as regular open sets and -open sets are investigated.
The concept of fuzzy orbit open sets under the mapping
Fibrewise topological spaces theory is a relatively new branch of mathematics, less than three decades old, arisen from algebraic topology. It is a highly useful tool and played a pivotal role in homotopy theory. Fibrewise topological spaces theory has a broad range of applications in many sorts of mathematical study such as Lie groups, differential geometry and dynamical systems theory. Moreover, one of the main objects, which is considered in fibrewise topological spaces theory is connectedness. In this regard, we of the present study introduce the concept of connected fibrewise topological spaces and study their main results.
In This paper, we introduce the associated graphs of commutative KU-algebra. Firstly, we define the KU-graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative KU-algebra are the same, where the graph is complete bipartite graph.
Advances in digital technology and the World Wide Web has led to the increase of digital documents that are used for various purposes such as publishing and digital library. This phenomenon raises awareness for the requirement of effective techniques that can help during the search and retrieval of text. One of the most needed tasks is clustering, which categorizes documents automatically into meaningful groups. Clustering is an important task in data mining and machine learning. The accuracy of clustering depends tightly on the selection of the text representation method. Traditional methods of text representation model documents as bags of words using term-frequency index document frequency (TFIDF). This method ignores the relationship an
... Show MoreRecently, complementary perfect corona domination in graphs was introduced. A dominating set S of a graph G is said to be a complementary perfect corona dominating set (CPCD – set) if each vertex in is either a pendent vertex or a support vertex and has a perfect matching. The minimum cardinality of a complementary perfect corona dominating set is called the complementary perfect corona domination number and is denoted by . In this paper, our parameter hasbeen discussed for power graphs of path and cycle.
This research talked about the importance of adjacent structures for informing the stage show for children. The researcher began from the importance of adjacent structures for informing the show to introduce the various and different proofs, on the level of creativity and artistic shape of the accomplishment over it’s shifts that contribute to formation the show and it's intellectual, artistic, technical and cognitive Marks that contribute in dynamism the interactive show and contact the idea that connect with the design and directional vision for the beauty and cognitive. Lead to the eager operation in attention, sensitive and attractive the child. The research consist of four chapters: The first chapter include methodological framewo
... Show MoreThis research presents the concepts of compatibility and edge spaces in
We use the idea of Grill, this study generalized a new sort of linked space like –connected –hyperconnected and investigated its features, as well as the relationship between it and previously described notation. It also developed new sorts of functions, such as hyperconnected space, and identifying their relationship, by offering numerous instance and attributes that belong to this set. This set will serve as a starting point for further research into the sets many future possibilities. Also, we use some of the theorems and observations previously studied and relate them to the grill and the Alpha group, and benefit from them in order to obtain new results in this research. We applied the concept of Connected to them and obtained
... Show More