Preferred Language
Articles
/
cBaLtIcBVTCNdQwCrVwq
NEUTRAL DELAY DIFFERENTIAL EQUATION WITH ONE LARGE DELAY
...Show More Authors

Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
Approximation Solution of Nonlinear Parabolic Partial Differential Equation via Mixed Galerkin Finite Elements Method with the Crank-Nicolson Scheme
...Show More Authors

The approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method
...Show More Authors

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Sat Apr 09 2022
Journal Name
Engineering, Technology & Applied Science Research
A Semi-Empirical Equation based on the Strut-and-Tie Model for the Shear Strength Prediction of Deep Beams with Multiple Large Web Openings
...Show More Authors

The behavior and shear strength of full-scale (T-section) reinforced concrete deep beams, designed according to the strut-and-tie approach of ACI Code-19 specifications, with various large web openings were investigated in this paper. A total of 7 deep beam specimens with identical shear span-to-depth ratios have been tested under mid-span concentrated load applied monotonically until beam failure. The main variables studied were the effects of width and depth of the web openings on deep beam performance. Experimental data results were calibrated with the strut-and-tie approach, adopted by ACI 318-19 code for the design of deep beams. The provided strut-and-tie design model in ACI 318-19 code provision was assessed and found to be u

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Engineering Analysis With Boundary Elements
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Numerical Treatment of First Order Volterra Integro-Differential Equation Using Non-Polynomial Spline Functions
...Show More Authors

The approach given in this paper leads to numerical methods to find the approximate solution of volterra integro –diff. equ.1st kind. First, we reduce it from integro VIDEs to integral VIEs of the 2nd kind by using the reducing theory, then we use two types of Non-polynomial spline function (linear, and quadratic). Finally, programs for each method are written in MATLAB language and a comparison between these two types of Non-polynomial spline function is made depending on the least square errors and running time. Some test examples and the exact solution are also given.

View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Large-Coessential and Large-Coclosed Submodules
...Show More Authors

The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M  be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that  .

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Large-Coessential and Large-Coclosed Submodules
...Show More Authors

The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M  be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that  .

Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Splitting the One-Dimensional Wave Equation. Part I: Solving by Finite-Difference Method and Separation Variables
...Show More Authors

In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Mean Square Exponential Stability of Semi-Linear Stochastic Perturbed Differential Equation Via Lyapunov Function Approach
...Show More Authors

    In this work, a class of stochastically perturbed differential systems with standard Brownian motion of ordinary unperturbed differential system is considered and studied. The necessary conditions for the existence of a unique solution of the stochastic perturbed semi-linear system of differential equations are suggested and supported by concluding remarks. Some theoretical results concerning the mean square exponential stability of the nominal unperturbed deterministic differential system and its equivalent stochastically perturbed system with the deterministic and stochastic process as a random noise have been stated and proved. The proofs of the obtained results are based on using the stochastic quadratic Lyapunov function meth

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of classical method and optimization methods for estimating parameters in nonlinear ordinary differential equation
...Show More Authors

 ABSTRICT:

  This study is concerned with the estimation of constant  and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es

... Show More
View Publication Preview PDF
Crossref