In this paper, the oscillatory and nonoscillatory qualities for every solution of fourth-order neutral delay equation are discussed. Some conditions are established to ensure that all solutions are either oscillatory or approach to zero as . Two examples are provided to demonstrate the obtained findings.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
In this paper we investigate the stability and asymptotic stability of the zero solution for the first order delay differential equation
where the delay is variable and by using Banach fixed point theorem. We give new conditions to ensure the stability and asymptotic stability of the zero solution of this equation.