One and two-dimensional hydraulic models simulations are important to specify the hydraulic characteristics of unsteady flow in Al-Gharraf River in order to define the locations that facing problems and suggesting the necessary treatments. The reach in the present study is 58200m long and lies between Kut and Hai Cities. Both numerical models were simulated using HEC-RAS software, 5.0.4, with flow rates ranging from 100 to 350 m3/s. Multi-scenarios of gates openings of Hai Regulator were applied. While the openings of Al-Gharraf Head Regulator were ranged between 60cm to fully opened. The suitable manning roughness for the unsteady state was
... Show MoreThis paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
One of ciphering systems depends on transposition of letters in plain text to generate cipher text. The programming of transposition depends mainly on 2-dimension matrix in either methods but the difference is in columnar .We print columns in the matrix according to their numbers in key but in the fixed, the cipher text will be obtained by printing matrix by rows.
This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.