Preferred Language
Articles
/
cBaLtIcBVTCNdQwCrVwq
NEUTRAL DELAY DIFFERENTIAL EQUATION WITH ONE LARGE DELAY
...Show More Authors

Publication Date
Sun Dec 01 2013
Journal Name
2013 Ieee International Rf And Microwave Conference (rfm)
Differential Evolution algorithm for linear frequency modulation radar signal denoising
...Show More Authors

Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jul 20 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Elzaki transform decomposition approach to solve Riccati matrix differential equations
...Show More Authors

Elzaki Transform Adomian decomposition technique (ETADM), which an elegant combine, has been employed in this work to solve non-linear Riccati matrix differential equations. Solutions are presented to demonstrate the relevance of the current approach. With the use of figures, the results of the proposed strategy are displayed and evaluated. It is demonstrated that the suggested approach is effective, dependable, and simple to apply to a range of related scientific and technical problems.

Scopus
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations
...Show More Authors

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Third Order Differential Subordination for Analytic Functions Involving Convolution Operator
...Show More Authors

       In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.

View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon May 04 2009
Journal Name
Journal Of Al-nahrain University
Solution of two-dimensional fractional order volterra integro-differential equations
...Show More Authors

In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.

View Publication Preview PDF
Publication Date
Thu Mar 24 2022
Journal Name
Journal Of Experimental Botany
Molecular basis of differential adventitious rooting competence in poplar genotypes
...Show More Authors

Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We foun

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Determination of Ibuprofen in Pharmaceutical Formulations Using Differential Pulse Polarography
...Show More Authors

     A reliable differential pulse polarographic (DPP) method has been developed and applied for the determination of ibuprofen IBU in dosage form with dropping mercury electrode (DME) versus Ag/AgCl. The best peak was found at cathodic peak of -1.18 V in phosphate buffer at pH=4 and 0.025M of KNO3 as supporting electrolyte. In order to obtaine the highest sensitivity, instrumental and experimental parameters were examined including the type and concentration of supporting electrolyte, pH of buffer solution, pulse amplitude and voltage step time. Diffusion current showed a direct linear relationship to ibuprofen concentration in the range of (5 – 30) μg. mL-1 (2.43× 10-5

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu May 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Solving Fractional Hyperbolic Partial Differential Equations
...Show More Authors

    In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional  partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution

View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Ain Shams Engineering Journal
A semi-analytical iterative method for solving differential algebraic equations
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Design of a Differential Chaotic on-off keying communication system
...Show More Authors

Among the available chaotic modulation schemes, differential chaos shift keying (DSCK) offers the perfect noise performance. The power consumption of DCSK is high since it sends chaotic signal in both of 1 and 0 transmission, so it does not represent the optimal choice for some applications like indoor wireless sensing where power consumption is a critical issue. In this paper a novel noncoherent chaotic communication scheme called differential chaos on-off keying (DCOOK) is proposed as a solution of this problem. With the proposed scheme, the DCOOK signal have a structure similar to chaos on-off keying (COOK) scheme with improved performance in noisy and multipath channels by introducing the concept of differential coherency used in DCS

... Show More
View Publication Preview PDF
Crossref