In this paper, the oscillatory properties and asymptotic behaviour of a third-order three-dimensional neutral system are discussed. Some sufficient conditions are obtained to ensure that all bounded positive solutions of the system are oscillatory or non-oscillatory. On the other hand, the non-oscillatory solutions either converge or diverge when goes to infinity. A special technique is adopted to include all possible cases. The obtained results include illustrative examples.
Physically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t
... Show MoreThe dynamical behavior of an ecological system of two predators-one prey updated with incorporating prey refuge and Beddington –De Angelis functional response had been studied in this work, The essential mathematical features of the present model have been studied thoroughly. The system has local and global stability when certain conditions are met. had been proved respectively. Further, the system has no saddle node bifurcation but transcritical bifurcation and Pitchfork bifurcation are satisfied while the Hopf bifurcation does not occur. Numerical illustrations are performed to validate the model's applicability under consideration. Finally, the results are included in the form of points in agreement with the obt
... Show MoreMn(II), Co(II), Ni(II), Cu(II), and Cr(III) metal complexes with the ligand (L) [3-(2nitro benzylidene) amino-2-thioxoimidazolidin-4-one] have been prepared and characterized in their solid state using the elemental micro analysis (C.H.N.S), flame atomic absorption, UV-Vis spectroscopy, FT-IR, magnetic susceptibility measurements, and electrical molar conductivity. The ratio of metal to ligand [M:L] was got for all complexes in the ethanol by using the molar ratio method, which produced comparable results with those results obtained for the solid complexes. From the data of all techniques, octahedral geometry was proposed for Cr(III), Mn(II), and Co(II) complexes, while tetrahedral structure was proposed for Ni(II), Cu(II) complexes.
In this paper, we discuss the difference between classical and nonclassical symmetries. In addition, we found the non-classical symmetry of the Benjamin Bona Mahony Equation (BBM). Finally, we found a new exact solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical symmetry.