Restoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [Zea mays L.]–soybean [Glycine max (L.) Merr.] rotation) on claypan soils. Soil samples were taken from 10‐cm‐depth increments from the soil surface to 30 cm for GB, BC, GWW, and RC with three replicates. Soil samples were collected from summit, backslope, and footslope landscape positions. Samples were taken at 50‐ and 150‐cm distances from the tree base. β‐Glucosidase, β‐glucosaminidase, dehydrogenase, fluorescein diacetate hydrolase (FDA), soil organic carbon (SOC), total nitrogen (TN), active carbon (AC), and water‐stable aggregates (WSA) were measured. Results showed that β‐glucosidase, β‐glucosaminidase, dehydrogenase, FDA, AC, WSA, and TN values were significantly greater (P < 0.01) for the GB, BC, GWW, and AB treatments than for the RC treatment. The first depth (0–10 cm) revealed the highest values for all soil quality parameters relative to second and third depths. The footslope landscape had the highest parameter values compared with summit and backslope positions. The 50‐cm distance of AB treatment had higher values than the 150‐cm distance for all measured parameters. Results showed that perennial vegetation practices enhanced soil quality by improving soil microbial activity and SOC.
Core Ideas
Permanent vegetative management (trees and grasses) enhanced soil quality.
Perennial practices improved microbial activity and increased soil organic carbon.
Perennial vegetative practices have agricultural and environmental significance.
Establishing perennial practices is an effective approach to enhance soil quality.
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization des
The performance of a diesel engine was tested with diesel oil contaminated with glycol at the engineering workshop/Department of Agricultural Machines and Equipment / College of the Agricultural Engineering Sciences at the University of Baghdad. To investigate the impact of different concentrations of glycol on the performance of a diesel engine, an experimental water-cooled four-stroke motor was utilized, with oil containing 0, 100, and 200 parts per million (ppm). Specific fuel consumption, thermal efficiency, friction power, and exhaust gas temperature were examined as performance indicators. To compare the significance of the treatments, the study employed a full randomization design (CRD), with three replicates for each treatment at th
The twelve samples of agricultural soils from four regions in Al-Najaf governorate with sampling plant with soil. Physical properties of the soil where studied, such as electrical conductivity ranged from (136.33-1070.00)μS/cm-3, and moisture which ranged between the values (0.39-36.48)%. The chemical analysis of the soil have included the proportion of calcium carbonate the ratio between (44.00-48.00%) has been observed increasing amounts of calcium carbonate in surface models. The pH where results indicate that pH values were close to study models ranged between (6.88-7.42) these values generally within the normal range for the measured pH values of the Iraqi soil. The amount of gypsum ranged betwe
The main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
This study presents the findings of a 3D finite element modeling on the performance of a single pile under various slenderness ratios (25, 50, 75, 100). These percentages were assigned to cover the most commonly configuration used in such kind of piles. The effect of the soil condition (dry and saturated) on the pile response was also investigated. The pile was modeled as a linear elastic, the surrounded dry soil layers were simulated by adopting a modified Mohr-Coulomb model, and the saturated soil layers were simulated by the modified UBCSAND model. The soil-pile interaction was represented by interface elements with a reduction factor (R) of 0.6 in the loose sand layer and 0.7 in t
Soil pH is one of the main factors to consider before undertaking any agricultural operation. Methods for measuring soil pH vary, but all traditional methods require time, effort, and expertise. This study aimed to determine, predict, and map the spatial distribution of soil pH based on data taken from 50 sites using the Kriging geostatistical tool in ArcGIS as a first step. In the second step, the Support Vector Machines (SVM) machine learning algorithm was used to predict the soil pH based on the CIE-L*a*b values taken from the optical fiber sensor. The standard deviation of the soil pH values was 0.42, which indicates a more reliable measurement and the data distribution is normal.