Restoration of degraded lands by adoption of recommended conservation management practices can rehabilitate watersheds and lead to improving soil and water quality. The objective was to evaluate the effects of grass buffers (GBs), biomass crops (BCs), grass waterways (GWWs), agroforestry buffers (ABs), landscape positions, and distance from tree base for AB treatment on soil quality compared with row crop (RC) (corn [Zea mays L.]–soybean [Glycine max (L.) Merr.] rotation) on claypan soils. Soil samples were taken from 10‐cm‐depth increments from the soil surface to 30 cm for GB, BC, GWW, and RC with three replicates. Soil samples were collected from summit, backslope, and footslope landscape positions. Samples were taken at 50‐ and 150‐cm distances from the tree base. β‐Glucosidase, β‐glucosaminidase, dehydrogenase, fluorescein diacetate hydrolase (FDA), soil organic carbon (SOC), total nitrogen (TN), active carbon (AC), and water‐stable aggregates (WSA) were measured. Results showed that β‐glucosidase, β‐glucosaminidase, dehydrogenase, FDA, AC, WSA, and TN values were significantly greater (P < 0.01) for the GB, BC, GWW, and AB treatments than for the RC treatment. The first depth (0–10 cm) revealed the highest values for all soil quality parameters relative to second and third depths. The footslope landscape had the highest parameter values compared with summit and backslope positions. The 50‐cm distance of AB treatment had higher values than the 150‐cm distance for all measured parameters. Results showed that perennial vegetation practices enhanced soil quality by improving soil microbial activity and SOC.
Core Ideas
Permanent vegetative management (trees and grasses) enhanced soil quality.
Perennial practices improved microbial activity and increased soil organic carbon.
Perennial vegetative practices have agricultural and environmental significance.
Establishing perennial practices is an effective approach to enhance soil quality.
The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
Recently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 3
This study seeks to clarify the adequacy of the current legal texts - procedural and objective - to respond to our situation under Corona and whether it needs to modify or develop treatment for this general exceptional circumstance or to avoid it, and the appropriateness of the idea of force majeure or emergency circumstance or (the idea of foreign reason) to face the consequences or effects of Corona on the rules of litigation and the formation of the court and its jurisdiction and procedural appointments and litigation procedures and appeal and judgment and its implementation in order to maintain and implement the public order that interferes with the mechanisms and measures taken It is intended and has legal and judicial implications
This research deals with the detection of possible surface soil pollution by radon emissions for an area located inside the university of Baghdad campus at AL-Jadiriyah / Baghdad. The area is about 5625 m2 and located near the College of Science for Women. The area used as construction rubbles dump yard in the past, while recently it is covered with Silty - Clayey soil furnished with grass and used as a playground. A surface survey performed on October 2018 by gridding the area into 36 stations where surface radiometric pollution readings recorded and soil samples collected by using an auger for the top 30 Cm which represents the root zone of the area. Soil samples tested in the laboratory by using can technique with CR-
The objective of this research was to investigate the effect of replacing fat(shortening) with different percentages of tahena on the quality properties (physiochemical and sensory ) of shortened cake.The percentages of moisture,protein ,fat and ash of cake increased significantly(p<0.05) as the replacement was increased .The highest increase percentages were 10,48,5,and 90 %,respectivly, at 100% replacement .Carbohydrate,however,decreased by 10%at 100% replacement .these findings may indicate improvement of cake nutritional value.Standing height,as an indicator of cake volume, also increased significantly by 4% at the 50% replacement then it decreased by 4% 100% replacement level.
Basic formula (control) has signific
Despite the antiplaque effect of mouth-rinsing with a combination composed of miswak (Salvadora persica L.) and green tea (Camellia sinensis var. assamica) extracts, no data are available regarding its effect on gingival tissue at the molecular level. This pilot study aimed to assess the effect of oral rinsing with this combination on gingival crevicular fluid (GCF) flow and IL-1β levels. Ten subjects rinsed with either the combination, 0.12% chlorhexidine gluconate (CHX) or distilled water without toothbrushing for 4 days after receiving baseline polishing. GCF IL-1β concentration, influx, resting volume and plaque quantity were measured at baseline and after 4 days for each intervention. No significant differences in GCF flow or
During the last few years, the greener additives prepared from bio-raw materials with low-cost and multifunctional applications have attracted considerable attention in the field of lubricant industry. In the present work, copolymers derived from sunflower and linseed oils with decyl methacrylate were synthesized by a thermal method using benzoyl peroxide (BPO) as a radical initiator. Direct polymerization of fatty acid double bonds in the presence of a free radical initiator results in the development of environmentally friendly copolymeric additives (Co-1 and Co-2). Fourier Transform Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) were used to characterize the resulting copolymers. Thermal decomposition of copolymers was de