An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification, including ResNet50, VGG19, and InceptionV4; They were trained and tested on an open-source satellite image dataset to analyze the algorithms' efficiency and performance and correlated the classification accuracy, precisions, recall, and f1-score. The result shows that InceptionV4 gives the best classification accuracy of 97% for cloudy, desert, green areas, and water, followed by VGG19 with approximately 96% and ResNet50 with 93%. The findings proved that the InceptionV4 algorithm is suitable for classifying oil spills and no spill with satellite images on a validated dataset.
Software testing is a vital part of the software development life cycle. In many cases, the system under test has more than one input making the testing efforts for every exhaustive combination impossible (i.e. the time of execution of the test case can be outrageously long). Combinatorial testing offers an alternative to exhaustive testing via considering the interaction of input values for every t-way combination between parameters. Combinatorial testing can be divided into three types which are uniform strength interaction, variable strength interaction and input-output based relation (IOR). IOR combinatorial testing only tests for the important combinations selected by the tester. Most of the researches in combinatorial testing appli
... Show MoreSpot panchromatic satellite image had been employed to study and know the difference Between ground and satellite data( DN ,its values varies from 0-255) where it is necessary to convert these DN values to absolute radiance values through special equations ,later it converted to spectral reflectance values .In this study a monitoring of the environmental effect resulted from throwing the sewage drainages pollutants (industrial and home) into the Tigris river water in Mosul, was achieved, which have an effect mostly on physical characters specially color and turbidity which lead to the variation in Spectral Reflectance of the river water ,and it could be detected by using many remote sensing techniques. The contaminated areas within th
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
The search (floors and transparent role in the design studios satellite channels) and presented as a study-oriented, and the research aims to identify the role of flooring transparent spaces studios satellite channels and side performative and aesthetic, and formulas design to highlight the role floors transparent spaces studios satellite channels. And highlight the importance of research, particularly in its contribution to the clarification of the concept of the relationship between transparency and performing aesthetic treatments for floors by clarifying its role in the designs of the internal spaces of the studios, as well as his contribution to the founding of the theory of looking at the base of such concepts. To achieve the object
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The phenomenon of terrorism is one of the most serious challenges facing the world at present. So this concept has occupied a great deal of interest of researchers and scholars in the relevant disciplines. There is no doubt that the study of the concept of terrorism requires a study of its various aspects. However, this study will be limited to knowing the role of television channels in providing the public with information about terrorist events, the extent to which young people rely on these channels to shape their attitudes towards terrorism issues. This study also seeks the relationship between satellite television channels and terrorism based on the relevant media li
... Show MoreDesigning Teaching Aids and Their Effects on Learning and Retaining Diving and Cartwheel on Floor Exercises in Women’s’ Artistic Gymnastics
The research aimed at designing teaching aids that develop and help retain diving and cartwheel for third year college of physical education and sport sciences students in women’s artistic gymnastics. In addition to that, the researchers aimed at identifying the effect of these aids on learning and retaining cartwheel and diving in floor exercises. The researchers used the experimental method. The subjects were (20) third year female students from the college of physical education and sport sciences/ university of Baghdad sections K and H. the main experiment lasted for
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show More