Preferred Language
Articles
/
bsj-9740
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Molecular Identification of Methylorubrum extorquens using PCR-Amplified MxaF Gene Fragments as A Molecular Marker
...Show More Authors

  Methylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilize

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Carbon Nanotubes: Synthesis via Flame Fragment Deposition (FFD) Method from Liquefied Petroleum Gas
...Show More Authors

The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning el

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Apr 07 2016
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Isolate and diagnose Mycotoxins associated with some producers of Indomie and Chips that available in local markets: Isolate and diagnose Mycotoxins associated with some producers of Indomie and Chips that available in local markets
...Show More Authors

Abstract
This study aimed to survey fungi associated with the product Indomie and Chips being the trades Iargely by a very important segment of society who are the children, beside consumed by adults, but less so, as the survey results to accompany some fungui samples sterile showed proportions presence included various fungi like. Aspergillus flavus, Aspergillus niger, Penicillium Spp., Fusarium graminearum, F.moniliforme, Alternaria alternate and Rhizopus Spp., and other fungi sterile are not diagnosed. The results showed large dominion fungi A. niger by presence sterile samples of both producers, followed by infection in Fusarium Spp., Penicillium Spp., and A. alternata by infection percentage 55, 20 and 17% respectively for the pr

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Image restoration using regularized inverse filtering and adaptive threshold wavelet denoising
...Show More Authors

Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .

                In this paper  a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering  and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Biochemical & Cellular Archives
EXTRACTING PECTIN FROM TOMATOES AND BEET PEELS AND USING IT IN THE MANUFACTURE OF YOGURT AND COMPARING THEM
...Show More Authors

Pectin is available in many plants and in this study, the peels of tomatoes and beet were used to be an economical source of pectin production instead of dumping it with waste or using it as animal feed. The pectin extracted from the peels using different solutions, namely citric acid (2 M), oxalic acid (2%) and hydrochloric acid (0.5 M) the outcome of the extraction methods, 7. 1%, 6% and 11% respectively for tomatoes peels, while the pectin of beet peels were 8%, 6.5%, and 8.3%, and the highest percentage obtained in the manner of hydrochloric acid adopted in the manufacture of yogurt.Yogurt was manufactured with four treatments, in the first treatment standard pectin was added and the second treatment in addition to the pectin extracted

... Show More
Scopus
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Improving the efficiency and security of passport control processes at airports by using the R-CNN object detection model
...Show More Authors

The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Sep 10 2019
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
A classification model on tumor cancer disease based mutual information and firefly algorithm
...Show More Authors

View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More
Publication Date
Sun Apr 01 2018
Journal Name
Journal Of Engineering/
Water quality assessment and total dissolved solids prediction using artificial neural network in Al-Hawizeh marsh south of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The

... Show More