Preferred Language
Articles
/
bsj-9740
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Feb 29 2024
Journal Name
International Journal Of Design & Nature And Ecodynamics
Artificial Neural Network Assessment of Groundwater Quality for Agricultural Use in Babylon City: An Evaluation of Salinity and Ionic Composition
...Show More Authors

View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Network Self-Fault Management Based on Multi-Intelligent Agents and Windows Management Instrumentation (WMI)
...Show More Authors

This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Cultivation of Entamoeba histolytica in vitro and diagnose the bacterial growths in culture media
...Show More Authors

The parasite was isolated from a stool sample, cultivated and maintained in vitro using Locke-egg medium (LEM) and Liver infusion agar medium (LIAM) . The culture was maintained for up to 21 months, and the best time to maintain the parasite was every 48 hours, although the growth in the culture media continued for 13 days without a maintenance. Additionally, no cyst formation was observed during cultivation of parasite in the two culture media. Although, was observe young cyst formed in LEM media were deletion of maintained. The diagnosis of bacteria growth in the culture media, bacterial content (Escherichia coli) was an dominance and essential requirement for a successful cultivation of Entamoeba histolytica in the two culture media.

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Identify and Diagnose the Causes of Financial Funding using the Root Cause Analysis Technique
...Show More Authors

The analysis of the root cause techniques is a reasonable option to be made to assess the root causes of the funding of construction projects. There are a variety of issues related to financing in construction industries in Iraq. The root,cause analysis is the impact of security and social conditions on financial funding. Variety tools of root cause analysis have originated from literature, as common methods for the detection of root causes. The purpose of this study was to identify and diagnose causes that lead to obstruction of financial funding in the construction projects in the republic of Iraq from the contractors' point of view and their interaction with a number of variables. The study diagnosed nine causes of fi

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Biochemical & Cellular Archives
EXTRACTING PECTIN FROM TOMATOES AND BEET PEELS AND USING IT IN THE MANUFACTURE OF YOGURT AND COMPARING THEM
...Show More Authors

Pectin is available in many plants and in this study, the peels of tomatoes and beet were used to be an economical source of pectin production instead of dumping it with waste or using it as animal feed. The pectin extracted from the peels using different solutions, namely citric acid (2 M), oxalic acid (2%) and hydrochloric acid (0.5 M) the outcome of the extraction methods, 7. 1%, 6% and 11% respectively for tomatoes peels, while the pectin of beet peels were 8%, 6.5%, and 8.3%, and the highest percentage obtained in the manner of hydrochloric acid adopted in the manufacture of yogurt.Yogurt was manufactured with four treatments, in the first treatment standard pectin was added and the second treatment in addition to the pectin extracted

... Show More
Scopus
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Exploring Important Factors in Predicting Heart Disease Based on Ensemble- Extra Feature Selection Approach
...Show More Authors

Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ssrn Electronic Journal
The Prospective of Artificial Neural Network (ANN’s) Model Application to Ameliorate Management of Post Disaster Engineering Projects
...Show More Authors

Currently and under the COVID-19 which is considered as a kind of disaster or even any other natural or manmade disasters, this study was confirmed to be important especially when the society is proceeding to recover and reduce the risks of as possible as injuries. These disasters are leading somehow to paralyze the activities of society as what happened in the period of COVID-19, therefore, more efforts were to be focused for the management of disasters in different ways to reduce their risks such as working from distance or planning solutions digitally and send them to the source of control and hence how most countries overcame this stage of disaster (COVID-19) and collapse. Artificial intelligence should be used when there is no practica

... Show More
View Publication
Crossref (3)
Crossref