Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an effective tool for reducing both the dependency problem and the wrapping effect. By construction, Taylor model methods appear particularly suitable for integrating nonlinear ODEs. In this paper, we analyze Taylor model based integration of ODEs and compare Taylor model with traditional enclosure methods for IVPs for ODEs. More advanced Taylor model integration methods are discussed in the algorithm (1). For clarity, we summarize the major steps of the naive Taylor model method as algorithm 1.
This research worked on identifying the effect of increasing the volume of indebtedness by companies listed on the Iraq Stock Exchange on the trading volume of those companies, and this research included some theoretical concepts related to both debt financing and trading volume, and it represents the research community of the joint-stock companies listed in The Iraq Stock Exchange (the banking sector). As for the research sample, it was deliberately chosen represented by companies with continuous trading without stopping, which reached 10 joint-stock companies, and the period of research was extended during the period 2011-2015, and a set of indicators and financial methods were used In measuring research v
... Show MoreRoller-Compacted Concrete (RCC) is a zero-slump concrete, with no forms, no reinforcing steel, no finishing and is wet enough to support compaction by vibratory rollers. Because the effectiveness of curing on properties and durability, the primary scope of this research is to study the effect of various curing methods (air curing, emulsified asphalt(flan coat) curing, 7 days water curing and permanent water curing) and different porcelanite (local material used as an Internal Curing agent) replacement percentages (volumetric replacement) of fine aggregate on some properties of RCC and to explore the possibility of introducing more practical RCC for road pavement with minimum requirement of curing. Cubes specimens were sawed from the slab
... Show MoreThe study focuses on the problem that Iraq is approaching an increasing rate of literacy;the available data refers to a rate of (18% -19%). In addition to the fact that the generalcurrent role of the programs directed to literacy is not actually effective enough to limit the expansion of this rate.
The importance of this study highlights the fact that the Iraqi universities are an important tributary among the tributaries of human development, especially in spreading the education of the voluntary work in literacy field and confirming the connection between the students and their society and their role in solving one of the prominent challenges that face the development, i.e., literacy.
<
... Show MoreA space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
Long before the pandemic, labour force all over the world was facing the quest of incertitude, which is normal and inherent of the market, but the extent of this quest was shaped by the pace of acceleration of technological progress, which became exponential in the last ten years, from 2010 to 2020. Robotic process automation, work remote, computer science, electronic and communications, mechanical engineering, information technology digitalisation o public administration and so one are ones of the pillars of the future of work. Some authors even stated that without robotic process automation (RPA) included in technological processes, companies will not be able to sustain a competitive level on the market (Madakan et al, 2018). R
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Watermarking operation can be defined as a process of embedding special wanted and reversible information in important secure files to protect the ownership or information of the wanted cover file based on the proposed singular value decomposition (SVD) watermark. The proposed method for digital watermark has very huge domain for constructing final number and this mean protecting watermark from conflict. The cover file is the important image need to be protected. A hidden watermark is a unique number extracted from the cover file by performing proposed related and successive operations, starting by dividing the original image into four various parts with unequal size. Each part of these four treated as a separate matrix and applying SVD
... Show MoreIn this paper is to introduce the concept of hyper AT-algebras is a generalization of AT-algebras and study a hyper structure AT-algebra and investigate some of its properties. “Also, hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-ideal of hyper AT-algebras hyper AT-algebra”. “We study homomorphism of hyper AT-algebras which are a common generalization of AT-algebras.