Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
The interest of many companies has become dealing with the tools and methods that reduce the costs as one of the most important factors of successful companies, and became the subject of the attention of many economic units because of the impact on the profits of company, and since the nineties of the last century the researchers and writers gave great attention to this subject, especially in light of the large competition and rapid developments in cost management techniques, as well as the wide and significant change in production methods that have been directed towards achieving customer satisfaction, all this and more driven by economic units in all sectors whether it is service or productivity to find methods that would reduc
... Show MoreThe study includes collection of data about cholera disease from six health centers from nine locations with 2500km2 and a population of 750000individual. The average of infection for six centers during the 2000-2003 was recorded. There were 3007 cases of diarrhea diagnosed as cholera caused by Vibrio cholerae. The percentage of male infection was 14. 7% while for female were 13. 2%. The percentage of infection for children (less than one year) was 6.1%, it while for the age (1-5 years) was 6.9%and for the ages more than 5 years was 14.5%.The total percentage of the patients stayed in hospital was 7.7%(4.2%for male and 3.4%for female). The bacteria was isolated and identified from 7cases in the Central Laboratory for Health in Baghdad. In
... Show MoreAbstract
The current research is attempt to test the reflection of the lean management on the human resources management practices of two of the most important communication companies operating in Iraq (`Zain & Asia cell), The research aims to Determine the extent of adoption of the lean management approach in the two researched companies, as it improving human resource management practices. The research problem represented in the existence of lack of in some aspects of the application the lean management approach in service sector and neglecting the impact of its tools on the human resource management practices. For this purpose three principle research hypotheses has been formulated, first there is a correlation rel
... Show MoreObjectives: The study aims to evaluate the effectiveness of the educational program on nurses’ knowledge towards nursing management for patients undergoing percutaneous coronary intervention (PCI), as well as to find out the relationship between nurses' knowledge and some of their demographic characteristics (age, gender, level of education, and years of experience in cardiac units).
Methodology: A Quasi-experimental as one group (pre and post test) study was conducted at the Heart Center in Al-Diwaniyah city for the period from December 7, 2019 to February 23, 2020. A sample of (40) nurses working in the heart center was chosen from different nursing addresses. The sample covered one gro
... Show More: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show More