Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
In this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show Moreأن عملية التعلم لازالت تسير بنفس الاسلوب المتبع الذي لا يعتبر المتعلمة محور اساسي في عملية التعلم مما سبب ظهور الملل وانخفاض الرغبة لدى المتعلمات للتعلم لغياب الحافز, ولكون المهارات الاساسية بكرة السلة كالمناولة الصدرية والطبطبة بتغير الاتجاه والتصويب السلمي تعد من المهارات المهمة في اللعبة تم اجراء هذه الدراسة الذي يهدف الى اعداد منهج تعليمي قائم على انموذج التعلم البنائي والتعرف على تأثيره في بعض ا
... Show MoreLet A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show Moreيهدف البحث الحالي التعرف على اسناتيجية هرم الافضلية في تحصيل طلاب الصف الثاني المتةسط لمادة الكيمياء ولتحقيق هدف البحث تم اتباع الننهج شبه التجريبي ذو الضبط الجزئي وتم تحديد مجتمع البحث بطلاب الصف الثاني في جميع المدارس المتوسطة والثانوية التابعة لمديرية تربية بابل قسم تربية المسيب
Objectives: The present study aimed to assess the compulsion among health care providers during the pandemic of COVID-19.
Methodology: a descriptive design was used in the present study. This study was conducted from October 10th, 2020 through May 20th, 2021. The study was conducted on a probability (convenient) sample of 248 physicians and nurses who work at Baghdad Teaching hospital in Baghdad city. The instrument was used in this study is the COVID Stress Scale-Arabic version (CSS).
Results: The result of this study showed that 42 % of HCPs had moderate symptoms and 36% of them had mild compulsive symptoms, and
... Show MoreObjective: The study aimed to assess the postoperative nurses' intervention for the patients with laparoscopic
cholecystectomy and to determine the relationship between Nurses' interventions and their demographic
characteristics.
Methodology: Quantitative design (a descriptive study) was started from 20th November 2012 up to 1st
September 2013. Non-probability (purposive sample) of (50) nurses, who were working in surgical wards, were
selected from Baghdad teaching hospitals (Baghdad Teaching Hospital, Digestives System and Liver Teaching
Hospital, AL-Kindy Teaching Hospital, and AL-Kadhimiyia Teaching Hospita). The data were collected through
the use of a constructed questionnaire, which consisted of two parts; the
توظيف القوة الناعمة في تنفيذ السياسة الخارجية الفرنسية اتجاه المنطقة العربية بعد 2017م