Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Oriented Gradients) is utilized to extract from the images. In addition, the Binarized Genetic Algorithm (BGA) is utilized as a features selection in order to select the most effective features of HOG. Random Forest (RF) functions as a classifier to categories facial emotions in people according to the image samples. The facial human examples of photos that have been extracted from the Yale Face dataset, where it contains the eleven human facial expressions are as follows; normal, left light, no glasses, joyful, centre light, sad, sleepy, wink and surprised. The proposed system performance is evaluated relates to accuracy, sensitivity (i.e., recall), precision, F-measure (i.e., F1-score), and G-mean. The highest accuracy for the proposed BGA-RF method is up to 96.03%. Besides, the proposed BGA-RF has performed more accurately than its counterparts. In light of the experimental findings, the suggested BGA-RF technique has proved its effectiveness in the human facial emotions identification utilizing images.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
A new class of generalized open sets in a topological space, called G-open sets, is introduced and studied. This class contains all semi-open, preopen, b-open and semi-preopen sets. It is proved that the topology generated by G-open sets contains the topology generated by preopen,b-open and semi-preopen sets respectively.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
The purpose of this paper is to give some results theorems , propositions and corollaries concerning new algebraic systems flower , garden and farm with accustomed algebraic systems groupoid , group and ring.
Many codiskcyclic operators on infinite-dimensional separable Hilbert space do not satisfy the criterion of codiskcyclic operators. In this paper, a kind of codiskcyclic operators satisfying the criterion has been characterized, the equivalence between them has been discussed and the class of codiskcyclic operators satisfying their direct summand is codiskcyclic. Finally, this kind of operators is used to prove that every codiskcyclic operator satisfies the criterion if the general kernel is dense in the space.
Background: Inflammation of the brain parenchyma brought on by a virus is known as viral encephalitis. It coexists frequently with viral meningitis and is the most prevalent kind of encephalitis. Objectives: To throw light on viral encephalitis, its types, epidemiology, symptoms and complications. Results: Although it can affect people of all ages, viral infections are the most prevalent cause of viral encephalitis, which is typically seen in young children and old people. Arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumoviruses, and coronaviruses are just a few of the viruses that have been known to cause encephalitis. Conclusion: As new viruses emerge, diagnostic techniques advan
... Show MoreLet R be associative ring with identity and M is a non- zero unitary left module over R. M is called M- hollow if every maximal submodule of M is small submodule of M. In this paper we study the properties of this kind of modules.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes