Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Oriented Gradients) is utilized to extract from the images. In addition, the Binarized Genetic Algorithm (BGA) is utilized as a features selection in order to select the most effective features of HOG. Random Forest (RF) functions as a classifier to categories facial emotions in people according to the image samples. The facial human examples of photos that have been extracted from the Yale Face dataset, where it contains the eleven human facial expressions are as follows; normal, left light, no glasses, joyful, centre light, sad, sleepy, wink and surprised. The proposed system performance is evaluated relates to accuracy, sensitivity (i.e., recall), precision, F-measure (i.e., F1-score), and G-mean. The highest accuracy for the proposed BGA-RF method is up to 96.03%. Besides, the proposed BGA-RF has performed more accurately than its counterparts. In light of the experimental findings, the suggested BGA-RF technique has proved its effectiveness in the human facial emotions identification utilizing images.
Background: The risk of antibiotics resistance (AR) increases due to excessive of antibiotics either by health care provider or by the patients.
Objective: The assessment of the self-medication Practice of over the counter drugs and other prescription drugs and its associated risk factor.
Subjects and Methods: Study design: A descriptive study was conducted from “20th December 2019 to 08th January 2021”. A pre validated and structured questionnaire in English and Urdu language was created to avoid language barrier including personal detail, reasons and source and knowledge about over the counter drugs and Antibiotics. Sample of the study was randomly selected.
... Show MoreRobots have become an essential part of modern industries in welding departments to increase the accuracy and rate of production. The intelligent detection of welding line edges to start the weld in a proper position is very important. This work introduces a new approach using image processing to detect welding lines by tracking the edges of plates according to the required speed by three degrees of a freedom robotic arm. The two different algorithms achieved in the developed approach are the edge detection and top-hat transformation. An adaptive neuro-fuzzy inference system ANFIS was used to choose the best forward and inverse kinematics of the robot. MIG welding at the end-effector was applied as a tool in this system, and the wel
... Show MoreB3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.
Image databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p