Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Oriented Gradients) is utilized to extract from the images. In addition, the Binarized Genetic Algorithm (BGA) is utilized as a features selection in order to select the most effective features of HOG. Random Forest (RF) functions as a classifier to categories facial emotions in people according to the image samples. The facial human examples of photos that have been extracted from the Yale Face dataset, where it contains the eleven human facial expressions are as follows; normal, left light, no glasses, joyful, centre light, sad, sleepy, wink and surprised. The proposed system performance is evaluated relates to accuracy, sensitivity (i.e., recall), precision, F-measure (i.e., F1-score), and G-mean. The highest accuracy for the proposed BGA-RF method is up to 96.03%. Besides, the proposed BGA-RF has performed more accurately than its counterparts. In light of the experimental findings, the suggested BGA-RF technique has proved its effectiveness in the human facial emotions identification utilizing images.
Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses.
... Show MoreTo achieve safe security to transfer data from the sender to receiver, cryptography is one way that is used for such purposes. However, to increase the level of data security, DNA as a new term was introduced to cryptography. The DNA can be easily used to store and transfer the data, and it becomes an effective procedure for such aims and used to implement the computation. A new cryptography system is proposed, consisting of two phases: the encryption phase and the decryption phase. The encryption phase includes six steps, starting by converting plaintext to their equivalent ASCII values and converting them to binary values. After that, the binary values are converted to DNA characters and then converted to their equivalent complementary DN
... Show MoreThe confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut
... Show MoreComputer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the positi
In this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
B3LYP/6-31G, DFT method was applied to hypothetical study the design of six carbon nanotube materials based on [8]circulene, through the use of cyclic polymerization of two and three molecules of [8]circulene. Optimized structures of [8]circulene have saddle-shaped. Design of six carbon nanotubes reactions were done by thermodynamically calculating (Δ S, Δ G and Δ H) and the stability of these hypothetical nanotubes depending on the value of HOMO energy level. Nanotubes obtained have the most efficient gap energy, making them potentially useful for solar cell applications.