The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accurate solution for indoor robot navigation. The more accurate solution of the guide robotic system opens a new window of the self-localization system and solves the more complex problem of indoor robot navigation. It makes a reliable interface between humans and robots. This study successfully demonstrated how a robot finds its initial position inside a room. A deep learning system, such as a convolutional neural network, trains the self-localization system as an image classification problem. The robot was placed inside the room to collect images using a panoramic camera. Two datasets were created from the room images based on the height above and below the chest. The above-mentioned method achieved a localization accuracy of 98.98%.
The basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreImage Fusion Using A Convolutional Neural Network
In this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s
JPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
تعد مجالات الصورة وعلاماتها الحركية حضوراً دلالياً للاتصال العلامي واتساعاً في الرابطة الجدلية ما بين الدوال ومداليها، التي تقوم بها الرؤية الاخراجية لإنتاج دلالات اخفائية تمتلك جوهرها الانتقالي عبر الافكار بوصفها معطيات العرض، ويسعى التشفير الصوري الى بث ثنائية المعنى داخل الحقول المتعددة للعرض المسرحي، ولفهم المعنى المنبثق من هذه التشفيرات البصرية، تولدت الحاجة لبحث تشكيل هذه التشفيرات وكيفية تح
... Show MoreMany image processing and machine learning applications require sufficient image feature selection and representation. This can be achieved by imitating human ability to process visual information. One such ability is that human eyes are much more sensitive to changes in the intensity (luminance) than the color information. In this paper, we present how to exploit luminance information, organized in a pyramid structure, to transfer properties between two images. Two applications are presented to demonstrate the results of using luminance channel in the similarity metric of two images. These are image generation; where a target image is to be generated from a source one, and image colorization; where color information is to be browsed from o
... Show More