The interaction between comet Hale-Bopp tail with the solar wind is investigated in the present paper using magneto-hydrodynamic (MHD) numerical simulation, which accounts for the presence of the interplanetary magnetic field (IMF). The simulation is based on three-dimensional Lax-Wendroff explicit scheme, providing second-order accuracy in space and time. The ions produced from the nucleus of the comet will add considerable effects on the microstructure of the solar wind, thus severely altering its physical properties. The present simulation focuses on careful analysis of these properties by means of simulating the behavior of the comet Hale-Bopp’s tail at 1 AU from the sun. These properties include the changes of the plasma density, particle velocity, IMF changes, pressure, and internal energy. The results indicated that comet tail will highly disturb the physical properties of the solar wind for a considerable distance. These changes reflect the effect of including the source term in the present simulation. It is shown that the comet tail will retain its original shape faster as it approaches the sun. Practical comparisons are also presented in the present research with earlier work. The present simulation was made using MATLAB program.
Background: Giant middle cerebral artery (MCA) aneurysms are surgically challenging lesions. Because of the complexity and variability of these aneurysms, a customized surgical technique is often needed for each case. In this article, we present a modified clip reconstruction technique of a ruptured complex giant partially thrombosed middle cerebral artery aneurysm.
Case description: The aneurysm was exposed using the pterional approach. Following proximal control, the aneurysm sac was decompressed. Then, we applied permanent clips to reconstruct the aneurysm neck. The configuration of the aneurysm mandated a tailored clipping pattern to account for resi
... Show MoreThe main purpose of the work is to analyse studies of themagnetohydrodynamic “MHD” flow for a fluid of generalized Burgers’ “GB” within an annular pipe submitted under impulsive pressure “IP” gradient. Closed form expressions for the velocity profile, impulsive pressure gradient have been taken by performing the finite Hankel transform “FHT” and Laplace transform “LT” of the successive fraction derivatives. As a result, many figures are planned to exhibit the effects of (different fractional parameters “DFP”, relaxation and retardation times, material parameter for the Burger’s fluid) on the profile of velocity of flows. Furthermore, these figures are compa
A numerical evaluation of the crucial physical properties of a 3D unsteady MHD flow along a stretching sheet for a Casson fluid in the presence of radiation and viscous dissipation has been carried out. Meanwhile, by applying similarity transformations, the nonlinear partial differential equations (PDEs) are transformed into a system of ordinary differential equations (ODEs). Furthermore, in the numerical solution of nonlinear ODEs, the shooting method along with Adams Moulton method of order four has been used. The obtained numerical results are computed with the help of FORTRAN. The tables and graphs describe the numerical results for different physical parameters which affect the velocity and temperature profiles.
This paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.
The present work provides theoretical investigation of laser photoacoustic one dimensional imaging to detect a blood vessel or tumor embedded within normal tissue. The key task in photoacoustic imaging is to have acoustic signal that help to determine the size and location of the target object inside normal tissue. The analytical simulation used a spherical wave model representing target object (blood vessel or tumor) inside normal tissue. A computer program in MATLAB environment has been written to realize this simulation. This model generates time resolved acoustic wave signal that include both expansion and contraction parts of the wave. The photoacoustic signal from the target object is simulated for a range of laser pulse duration 1
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show Moregenerator the metal conductor is replaced by conducting gas plasma.
In this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number and are discussed under the different values, as shown in the plots.
In this paper, we introduce new definitions of the - spaces namely the - spaces Here, and are natural numbers that are not necessarily equal, such that . The space refers to the n-dimensional Euclidean space, refers to the quaternions set and refers to the N-dimensional quaternionic space. Furthermore, we establish and prove some properties of their elements. These elements are quaternion-valued N-vector functions defined on , and the spaces have never been introduced in this way before.