We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
The research is marked by (Development Design Interior spaces for children's theater halls in the city of Baghdad). Which consists of four chapters, namely, the first chapter the research problem and the need for him, which included identifying the research problem and of poor achievement of aesthetic values and functional at the scene of the child and its significance in that it is a way of cultural entertainment education of the child and its objectives as it aims to evelop interiors for children's theater, and its limits. Theater Magic Lantern in the city of Baghdad, the second chapter addressed the theoretical framework, which consists of the psychology of the child, and space Children's Theatre and types, forms of children's theater
... Show MoreIn this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
In current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi
... Show MoreIn the current study, the definition of mapping of fuzzy neutrosophic generalized semi-continuous and fuzzy neutrosophic alpha has generalized mapping as continuous. The study confirmed some theorems regarding such a concept. In the following, it has been found relationships among fuzzy neutrosophic alpha generalized mapping as continuous, fuzzy neutrosophic mapping as continuous, fuzzy neutrosophic alpha mapping as continuous, fuzzy neutrosophic generalized semi mapping as continuous, fuzzy neutrosophic pre mapping as continuous and fuzzy neutrosophic γ mapping as continuous.
The statistical distributions study aimed to obtain on best descriptions of variable sets phenomena, which each of them got one behavior of that distributions . The estimation operations study for that distributions considered of important things which could n't canceled in variable behavior study, as result this research came as trial for reaching to best method for information distribution estimation which is generalized linear failure rate distribution, throughout studying the theoretical sides by depending on statistical posteriori methods like greatest ability, minimum squares method and Mixing method (suggested method).
The research
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
This study emphasizes the infinite-boundary integro-differential equation. To examine the approximate solution of the problem, two modified optimization algorithms are proposed based on generalized Laguerre functions. In the first technique, the proposed method is applied to the original problem by approximating the solution using the truncated generalized Laguerre polynomial of the unknown function, optimizing coefficients through error minimization, and transforming the integro-differential equation into an algebraic equation. In contrast, the second approach incorporates a penalty term into the objective function to effectively enforce boundary and integral constraints. This technique reduces the original problem to a mathematical optimi
... Show More
