We define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
The present study concentrates on the new generalizations of the Jordan curve theorem. In order to achieve our goal, new spaces namely PC-space and strong PC-space are defined and studied their properties. One of the main concepts that use to define the related classes of spaces is paracompact space. In addition, the property of being PC-space and strong PC-space is preserved by defining a new type of function so called para-perfect function.
The statistical distributions study aimed to obtain on best descriptions of variable sets phenomena, which each of them got one behavior of that distributions . The estimation operations study for that distributions considered of important things which could n't canceled in variable behavior study, as result this research came as trial for reaching to best method for information distribution estimation which is generalized linear failure rate distribution, throughout studying the theoretical sides by depending on statistical posteriori methods like greatest ability, minimum squares method and Mixing method (suggested method).
The research
... Show MoreSome relations of inclusion and their properties are investigated for functions of type " -valent that involves the generalized operator of Srivastava-Attiya by using the principle of strong differential subordination.
In the current study, the definition of mapping of fuzzy neutrosophic generalized semi-continuous and fuzzy neutrosophic alpha has generalized mapping as continuous. The study confirmed some theorems regarding such a concept. In the following, it has been found relationships among fuzzy neutrosophic alpha generalized mapping as continuous, fuzzy neutrosophic mapping as continuous, fuzzy neutrosophic alpha mapping as continuous, fuzzy neutrosophic generalized semi mapping as continuous, fuzzy neutrosophic pre mapping as continuous and fuzzy neutrosophic γ mapping as continuous.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
Some cases of common fixed point theory for classes of generalized nonexpansive maps are studied. Also, we show that the Picard-Mann scheme can be employed to approximate the unique solution of a mixed-type Volterra-Fredholm functional nonlinear integral equation.
In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).