Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
The study dealt with the design of tourist resting units in the Iraqi Marshes in contemporary design methods while preserving the heritage. The first chapter contained the research problem which is the important event of the inclusion of the Marshes in the World Heritage List. This research is important because it aims to develop the tourist reality of the Marshlands. The second chapter dealt with three sections the first of which is tourism in the marsh environment, the second one dealt with the structure of tourist space and the third dealt with the design methods of the tourist resting units in the Iraqi marshes.
The most important results of the research are the following: the sample models have taken desig
... Show MoreA theoretical study on corrosion inhibitors was done by quantum calculations includes semi-empirical PM3 and Density Functional Theory (DFT) methods based on B3LYP/6311++G (2d,2P). Benzimidazole derivative (oxo(4- ((phenylcarbamothioyl) carbamoyl)phenyl) ammonio) oxonium (4NBP) and thiourea derivative 2-((4- bromobenzyl)thio) -1H-benzo[d] imidazole (2SB) were used as corrosion inhibitors and an essential quantum chemical parameters correlated with inhibition efficiency, EHOMO (highest occupied molecular orbital energy) and ELUMO (lowest molecular orbital energy). Other parameters are also studied like energy gap [ΔE (HOMO-LUMO)], electron affinity (EA), hardness (Δ), dipole moment (μ), softness (S), ionization potential (IE), absolut
... Show MoreIn recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreAbstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreSemi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show MoreNonalcoholic fatty liver disease (NAFLD) is a common liver disease that ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). So far, the underlying mechanism remains poorly understood. Here, we show that hepatic carboxylesterase 2 (CES2) is markedly reduced in NASH patients, diabetic
The second half of the last century witnessed a great scientific revolution that was able to bring about wide changes in various fields, including the field of physical education, which plays a fundamental role in the process of change for the better, and which knocked all the doors of modern science in various aspects and from this perspective we see that students have different capabilities And interests and motives, which require providing a differentiated education, and this depends on the necessity of knowing each student and on the school’s ability to know appropriate strategies for teaching each student so there is no single way to teach so the research problem comes in experimenting with an educational method that works on
... Show More