A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
This study is descriptive and theory of Dawn syndrome as the problem of research lies in the need to identify the identification of the causes of Dawn syndrome and its symptoms and methods of dealing with it, which has become a problem that needs treatment, especially after the numbers have become high in Iraq, which has not yet taken the necessary importance for treatment and care.
The objectives of the research were summarized in the identification of the most important causes of Dawn syndrome and its symptoms and diagnosis and ways or methods of dealing with people with Dawn syndrome in order to develop therapeutic plans for him.
... Show More
Urban land uses are in a dynamic state that varies over time, the city of Karbala in Iraq has experienced functional changes over the past 100 years, as the city is characterized by the presence of significant tourist and socio-economic activity represented by religious tourism, and it occur due to various reasons such as urbanization. The purpose of this study is to apply a Markov model to analyze and predict the behavior of transforming the use of land in Karbala city over time. This can include the conversion of agricultural land, or other areas into residential, commercial, industrial land uses. The process of urbanization is typically driven by population growth, economic development, based on a set of probabilities and transitions bet
... Show MoreIn this paper, we introduce a new class of Weighted Rayleigh Distribution based on two parameters, one is the scale parameter and the other is the shape parameter introduced in Rayleigh distribution. The main properties of this class are derived and investigated . The moment method and least square method are used to obtain estimators of parameters of this distribution. The probability density function, survival function, cumulative distribution and hazard function are derived and found. Real data sets are collected to investigate two methods that depend on in this study. A comparison is made between two methods of estimation and clarifies that MLE method is better than the OLS method by using the mea
... Show MoreThe objective of this paper is to show modern class of open sets which is an -open. Some functions via this concept were studied and the relationships such as continuous function strongly -continuous function -irresolute function -continuous function.
The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to
... Show More In this paper we show that the function , () p fLI α ∈ ,0<p<1 where I=[-1,1] can be approximated by an algebraic polynomial with an error not exceeding , 1 ( , , ) kp ft n ϕ αω where
,
1 ( , , ) kp ft n ϕ αω is the Ditizian–Totik modules of smoothness of unbounded function in , () p LI
Decision making is vital and important activity in field operations research ,engineering ,administration science and economic science with any industrial or service company or organization because the core of management process as well as improve him performance . The research includes decision making process when the objective function is fraction function and solve models fraction programming by using some fraction programming methods and using goal programming method aid programming ( win QSB )and the results explain the effect use the goal programming method in decision making process when the objective function is
fraction .
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .