Preferred Language
Articles
/
bsj-877
Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial
...Show More Authors

A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations
...Show More Authors

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression using Hierarchal Linear Polynomial Coding
...Show More Authors

Publication Date
Thu Feb 01 2018
Journal Name
Iet Signal Processing
Signal compression and enhancement using a new orthogonal‐polynomial‐based discrete transform
...Show More Authors

View Publication
Scopus (39)
Crossref (41)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations
...Show More Authors

 

   In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the  traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions
...Show More Authors

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

View Publication Preview PDF
Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay
...Show More Authors

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Fuzzy-Parametric Linear Programming Problems
...Show More Authors

The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.

View Publication Preview PDF
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
An Approximated Solutions for nth Order Linear Delay Integro-Differential Equations of Convolution Type Using B-Spline Functions and Weddle Method
...Show More Authors

The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Baghdad Science Journal
Solving Fuzzy Games Problems by Using Ranking Functions
...Show More Authors

In this paper, we deal with games of fuzzy payoffs problem while there is uncertainty in data. We use the trapezoidal membership function to transform the data into fuzzy numbers and utilize the three different ranking function algorithms. Then we compare between these three ranking algorithms by using trapezoidal fuzzy numbers for the decision maker to get the best gains

View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref