Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D CNNs have shown improved accuracy in the classification of ASD compared to traditional machine learning algorithms, on all these datasets with higher accuracy of 99.45%, 98.66%, and 90% for Autistic Spectrum Disorder Screening in Data for Adults, Children, and Adolescents respectively as they are better suited for the analysis of time series data commonly used in the diagnosis of this disorder
KE Sharquie, AA Noaimi, S Adnan, AM Al-Niddawi, WK Aljanabi, American Journal of Dermatology and Venereology, 2020 - Cited by 2
Background: Oral lichen planus is one of the most common dermatological diseases presenting in the oral cavity. Hence, viral infection of the oral mucosa may be involved in the pathogenesis of oral lichen planus, Taking in to consideration the oncogenic potential of HSV-1, this study aimed to assess the presence of Herpes Simplex Virus type one by direct immunoflourescent in oral lichen planus. This study aimed to assess the presence of HSV type1 by direct immunofluorescent in histopathologically diagnosed OLP Material and Method: Twenty formalin fixed embedded tissue blocks of oral lichen planus with 2 Positive control cases were taken from patients having infection with herpes labialis, US Biological herpes simplex virus-1 Glycoprotein
... Show MoreBackground: Periodontal diseases (PD) are inflammatory conditions of the tissues supporting the teeth, most often gingivitis and periodontitis. Maxillary chronic rhinosinusitis (MCRS) is the inflammation of the maxillary sinuses which is last for at least 12 consecutive weeks duration. Aims of study: Distribution of periodontal diseases among patients with Maxillary chronic rhinosinusitis according to gender and age. Materials and methods: Males and females subjects (25-45 years), divided into two groups; 150 patients suffer from MCRS and 130 subjects without MCRS. Clinical periodontal parameters; Plaque Index (PL.I), Gingival Index (G.I), Probing Pocket Depth (PPD), Clinical Attachment Level (CAL) and Bleeding On Probing (BOP) recorded f
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreThe aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystal
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreBackground: The association between facial types and dental arches forms has considerable implications in orthodontic diagnosis and treatment planning. The aim was to establish the maxillary and mandibular dental arches width and length in skeletal and dental class II division 1 and class III malocclusion groups, find out the most frequent dental arch form and facial type and the association between them and to check the gender differences. Materials and Methods: Frontal and lateral facial photographs and maxillary and mandibular occlussal photographs for 90 iraqi subjects with age 18-25 years old (45 males and 45 females) divided equally into three groups, the 1st group with class II division 1malocclusion (overjet more than 3mm but less t
... Show MoreDatabase is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r
... Show MoreAssessment of Salivary Macrophage Inflammatory Protein-1 Alpha Level in Different Stages of Periodontitis, Riyam Muthanna Muhammed*, Hadeel Mazin Akram
This research develops a new method based on spectral indices and random forest classifier to detect paddy rice areas and then assess their distributions regarding to urban areas. The classification will be conducted on Landsat OLI images and Landsat OLI/Sentinel 1 SAR data. Consequently, developing a new spectral index by analyzing the relative importance of Landsat bands will be calculated by the random forest. The new spectral index has improved depending on the most three important bands, then two additional indices including the normalized difference vegetation index (NDVI), and standardized difference built-up index (NDBI) have been used to extract paddy rice fields from the data. Several experiments being
... Show More