Preferred Language
Articles
/
bsj-8504
Deep Learning-based Predictive Model of mRNA Vaccine Deterioration: An Analysis of the Stanford COVID-19 mRNA Vaccine Dataset
...Show More Authors

The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Evaluation of Common Stocks Using The Fama-French Five Factor Model An Applied Study in The Iraq Stock Exchange
...Show More Authors

     The process of stocks evaluating considered as a one of challenges for the financial analysis, since the evaluating focuses on define the current value for the cash flows which the shareholders expected to have. Due to the importance of this subject, the current research aims to choose Fama & French five factors Model to evaluate the common stocks to define the Model accuracy in Fama& French for 2014. It has been used factors of volume, book value to market value, Profitability and investment, in addition to Beta coefficient which used in capital assets pricing Model as a scale for Fama & French five factors Model. The research sample included 11 banks listed in Iraq stock market which have me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 02 2019
Journal Name
Journal Of The College Of Languages (jcl)
A traditional model of translation: Critical analysis: Традиционные модели перевода: критический анализ
...Show More Authors

 

 The article critically analyzes traditional translation models. The most influential models of translation in the second half of the 20th century have been mentioned, among which the theory of formal and dynamic equivalence, the theory of regular correspondences, informative, situational-denotative, functional-pragmatic theory of communication levels have been considered. The selected models have been analyzed from the point of view of the universality of their use for different types and types of translation, as well as the ability to comprehend the deep links established between the original and the translation.

Аннотация

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 07 2021
Journal Name
Journal Of Craniofacial Surgery
Management of Maxillofacial Trauma in Attempt Suicide Patients During COVID-19 Pandemic
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and Alimentary Tract: Current Evidence and Recent Recommendations
...Show More Authors

The pandemic of coronavirus disease 2019 (COVID-19), first reported in China, in December 2019 and since then the digestive tract involvement of  COVID-19 has been progressively described. In this review, I summed recent studies, which have addressed the pathophysiology of COVID-19-induced gastrointestinal symptoms, their prevalence, and bowel pathological and radiological findings of infected patients. The effects of gut microbiota on SARS-CoV-2 and the challenges of nutritional therapy of the infected patients are depicted.  Moreover, I provide a concise summary of the recommendations on the management of inflammatory bowel disease, colorectal cancer, and performing endoscopy in the COVID era. Finally, the COVID pancreatic re

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Effect of COVID-19 on the Role of Renin Enzyme and ACE2 and Hormones in PCOS Females
...Show More Authors

Polycystic ovary syndrome (PCOS) is the most endocrine problem in women of regenerative age. PCOS women typically belong to an age and sex group which is at higher risk for severe coronavirus disease (COVID-19). COVID-19 targets cells through angiotensin-converting enzyme 2 (ACE2) receptor presents on cells in veins, lungs, heart, digestion tracts, and kidneys. Renin-Angiotensin System (RAS) over activity has likewise been described in metabolic disorders; type 2 diabetes mellitus (T2DM), and conditions shared by women with polycystic ovary condition. The point of this study is to know the job of renin and ACE2 in PCOS and coronavirus and its relationship with hormones and other metabolic parameters related. The study groups consist of 1

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Sat Apr 29 2023
Journal Name
Research Journal Of Pharmacy And Technology
Assessment of Serum Neopterin Levels in patients hospitalized with severe COVID-19
...Show More Authors

Background: COVID-19 has caused a considerable number of hospital admissions in China since December 2019. Many COVID-19 patients experience signs of acute respiratory distress syndrome, and some are even in danger of dying. Objective: to measure the serum levels of D-dimer, Neutrophil-Lymphocyte count ratio (NLR), and neopterin in patients hospitalized with severe COVID-19 in Baghdad, Iraq. And to determine the cut-off values (critical values) of these markers for the distinction between the severe patients diagnosed with COVID‐19 and the controls. Materials and methods: In this case-control study, we collect blood from 89 subjects, 45 were severe patients hospitalized in many Baghdad medical centers who were diagnosed with COVID

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jul 22 2021
Journal Name
Open Access Macedonian Journal Of Medical Sciences
Intestinal Parasitic Infections in Relation to COVID-19 in Baghdad City
...Show More Authors

BACKGROUND: COVID-19 is resulted from severe acute respiratory syndrome coronavirus 2, which initiated in China in December 2019. Parasites are efficient immune modulators because their ability to stimulate an immune response in infected persons. AIM: This study aims to detect if there is a probable relationship between intestinal parasitic infections and COVID-19. METHODS: Ninety patients consulted at Al-Kindy Teaching Hospital (Al-Shifa center) from October 2020 till April 2021, confirmed infection with COVID-19 by PCR. Stool examination was done for detecting intestinal parasites. RESULTS: From 90 patients, males were 63 (70%), with median age 32 years, while females were 27 (30%), with age 24–44 years. Asymptomatic pati

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Crossref