The emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA molecule. A sequence DL model based on a bidirectional gated recurrent unit (GRU) is implemented. The model is applied to the Stanford COVID-19 mRNA vaccine dataset to predict the mRNA sequences deterioration by predicting five reactivity values for every base in the sequence, namely reactivity values, deterioration rates at high pH, at high temperature, at high pH with Magnesium, and at high temperature with Magnesium. The Stanford COVID-19 mRNA vaccine dataset is split into the training set, validation set, and test set. The bidirectional GRU model minimizes the mean column wise root mean squared error (MCRMSE) of deterioration rates at each base of the mRNA sequence molecule with a value of 0.32086 for the test set which outperformed the winning models with a margin of (0.02112). This study would help other researchers better understand how to forecast mRNA sequence molecule properties to develop a stable COVID-19 vaccine.
The goal of this work is demonstrating, through the gradient observation of a of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of ( -system) was developed based on finite time ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo
... Show MoreDue to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreThis paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
Researchers often equate database accounting models in general and the Resources-Events-Agents (REA) accounting model in particular with events accounting as proposed by Sorter (1969). In fact, REA accounting, database accounting, and events accounting are very different. Because REA accounting has become a popular topic in AIS research, it is important to agree on exactly what is meant by certain ideas, both in concept and in historical origin. This article clarifies the analyzing framework of REA accounting model and highlights the differences between the terms events accounting, database accounting, semantically-modeled accounting, and REA accounting. It als
... Show MoreThis paper considers the maximum number of weekly cases and deaths caused by the COVID-19 pandemic in Iraq from its outbreak in February 2020 until the first of July 2022. Some probability distributions were fitted to the data. Maximum likelihood estimates were obtained and the goodness of fit tests were performed. Results revealed that the maximum weekly cases were best fitted by the Dagum distribution, which was accepted by three goodness of fit tests. The generalized Pareto distribution best fitted the maximum weekly deaths, which was also accepted by the goodness of fit tests. The statistical analysis was carried out using the Easy-Fit software and Microsoft Excel 2019.
Background: The global threat of COVID-19 outbreak and on the 11 March 2020, WHO acknowledged that the virus would likely spread to all countries across the globe and declared the coronavirus outbreak a pandemic which is the fifth pandemic since 20 century and this has brought human lives to a sudden and complete lockdown and the confirmed cases of this disease and deaths continue to rise in spite of people around the world are taking important actions to mitigate and decrease transmission and save lives. Objectives: To assess the effect of exercise and physical activity on the immunity against COVID-19. Methods: Collected electronic databases including (Medline, EMBASE, Google Scholar, PubMed and Web of Science) were searched with
... Show MoreThe Machine learning methods, which are one of the most important branches of promising artificial intelligence, have great importance in all sciences such as engineering, medical, and also recently involved widely in statistical sciences and its various branches, including analysis of survival, as it can be considered a new branch used to estimate the survival and was parallel with parametric, nonparametric and semi-parametric methods that are widely used to estimate survival in statistical research. In this paper, the estimate of survival based on medical images of patients with breast cancer who receive their treatment in Iraqi hospitals was discussed. Three algorithms for feature extraction were explained: The first principal compone
... Show MoreIn this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MoreAcademia Open Vol 8 No 2 (2023): December DOI: 10.21070/acopen.8.2023.8087 . Article type: (Medicine)Impact of COVID-19 on Dental Students' Psychological Health Maryam Hameed Alwan, [email protected], (1) Department of Oral Diagnosis, College of Dentistry, Baghdad University, Iraq, Iraq (1) Corresponding author Abstract This study investigates the psychological impact of the COVID-19 pandemic on dental students at Baghdad University College of Dentistry. Conducted between December 2021 and January 2022, this cross-sectional survey aligns with ethical guidelines and the Helsinki Declaration. The study utilized Cochran's equation to determine a sample size of at least 400, ensuring a 95% confidence level with a 5% margin of e
... Show MoreThe possible effects of COVID-19 vaccines on reproductive health and male fertility in particular have been discussed intensely by the scientific community and the public since their introduction during the pandemic. On news outlets and social media platforms, many claims have been raised regarding the deleterious effects of COVID-19 vaccines on sperm quality without scientific evidence. In response to this emerging conflict, we designed this study to evaluate and assess the effect of the Pfizer-BioNTech mRNA COVID-19 vaccine on male fertility represented by the semen analysis parameters.