An edge dominating set of a graph is said to be an odd (even) sum degree edge dominating set (osded (esded) - set) of G if the sum of the degree of all edges in X is an odd (even) number. The odd (even) sum degree edge domination number is the minimum cardinality taken over all odd (even) sum degree edge dominating sets of G and is defined as zero if no such odd (even) sum degree edge dominating set exists in G. In this paper, the odd (even) sum degree domination concept is extended on the co-dominating set E-T of a graph G, where T is an edge dominating set of G. The corresponding parameters co-odd (even) sum degree edge dominating set, co-odd (even) sum degree edge domination number and co-odd (even) sum degree edge domination value is defined. Further, the exact values of the above said parameters are found for some standard classes of graphs. The bounds of the co-odd (even) sum degree edge domination number are obtained in terms of basic graph terminologies. The co-odd (even) sum degree edge dominating sets are characterized. The relationships with other edge domination parameters are also studied.
Abstract
A new type of solar air heater was designed, fabricated, and tested in Baghdad, Iraq winter conditions. The heater consists of two main parts. The horizontal section was filled with the black colored iron chip while the vertical part has five pipes filled with Iraqi paraffin wax. A fan was fixed at the exit of the air. Two cases were studied: when the air moved by natural convection and when forced convection moved it. The studied air heater has proven its effectiveness as it heated the air passing through it to high temperatures. The results manifest that using little air movement makes the temperatures, stored energies, and efficiencies of the two studied cases converge
... Show MoreThe Atoms in Molecules (AIM) analysis for triosmium cluster, which contains trihydridede, carbon, carbonyl and 2-methylbenzothiazolide ligands, [Os3(µ-H)3(µ3-ɳ2-CC7H3(2-CH3)NS)(CO)8] is reported. Bonding features in this cluster has been analyzed based on QTAIM ("Quantum Theory of Atoms in Molecules") in this work. The topological indices derived from electron density of relevant interactions in triosmium compound have been studied. The major interesting point of the AIM analyses is that the core of part (Os3H3) reveals the absence of any critical points and bond paths connecting any pairs of O
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
Let A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show MoreThe factorial analysis method consider a advanced statistical way concern in different ways like physical education field and the purpose to analyze the results that we want to test it or measure or for knowing the dimensions of some correlations between common variables that formed the phenomenon in less number of factors that effect on explanation , so we must depend use the self consistent that achieved for reaching that basic request. The goal of this search that depending on techntion of self consistent degree guessing for choosing perfect way from different methods for (orthogonal & oblique) kinds in physical education factor studies and we select some of references for ( master & doctoral) and also the scientific magazine and confere
... Show MoreThis paper is concerned with introducing and studying the M-space by using the mixed degree systems which are the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.
Experimental results for the density of states of hydrogenated amorphous silicon due to Jackson et al near the valence and conduction band edges were analyzed using Levenberg-Marquardt nonlinear fitting method. It is found that the density of states of the valence band and the conduction band can be fitted to a simple power law, with a power index 0.60 near the valence band edge, and 0.55 near the conduction band edge. These results indicate a modest but noticeable deviation from the square root law (power index=0.5) which is found in crystalline semiconductors. Analysis of Jackson et al density of states integral J(E) data over about (1.4 eV) of photon energy range, showed a significant fit to a simple power law with a power index of 2.11
... Show More