With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor sets, resulting in four trained models. The test sets are used to evaluate the trained models using many evaluation metrics (accuracy, TPR, FNR, PPR, FDR). Results of Google Net model indicate the high performance of the designed models with 99.34% and 99.76% accuracies for indoor and outdoor datasets, respectively. For Mobile Net models, the result accuracies are 99.27% and 99.68% for indoor and outdoor sets, respectively. The proposed methodology is compared with similar ones in the field of object recognition and image classification, and the comparative study proves the transcendence of the propsed system.
In this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl
... Show MoreThe constructivist learning model is one of the models of constructivist theory in learning, as it generally emphasizes the active role of the learner during learning, in addition to that the intellectual and actual participation in the various activities to help students gain the skills of analyzing artistic works. The current research aims to know the effectiveness of the constructivist learning model in the acquisition of the skills of the Institute of Fine Arts for the skills of (technical work analysis). To achieve the goal, the researcher formulated the following hypothesis: There are no statistically significant differences between the average scores of the experimental group students in the skill test for analyzing artworks befor
... Show MoreMH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022
كثيرة هي البحوث والدراسات التي نراجعها في السلوك التنظيمي، بحكم عملنا كأستاذ دراسات عليا بتخصص ادارة الموارد البشرية ونظرية المنظمة، ووقع بيننا بحثاً نظرياً متميزاً للباحثين
(Karin Sanders & Birgit Schyns)([1])، نشر في مجلة اصيلة هي (Personnel Review)، في عام (2006)، بمجلدها (35) وبالعدد (5)، تحت عنوان (Trust, Conflict and Cooperative Beha
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreHalf of the oil production of the worldwide is a result of the water flooding project. But the main concern of this process is mobility control of the injected fluid, because the unfavorable mobility ratio leads to fingering effect. Adding polymer to the injection water increase the water viscosity, therefore, the displacement will be more stable and have a greater sweep efficiency.
Using of polymer flooding has received more attention these days. Polymer has great potential in the Middle East region, especially in reservoir with high temperature and salinity.
The main objective of this work is to show the effect of shear rate, salinity, temperature, polymer concentration on polymer v
... Show MoreThe present work aimed to study effect of (N749 & N3) dyes on TiO2 optical and electrical properties for optoelectronic application. The TiO2 paste prepared by using a doctor blade method. The samples were UV-VIS specterophometricall analyzes of TiO2 before and after immersed in dyes (N749 & N3). The results showed absorption spectra shift toward the visible region due to the adsorption of dye molecules on the surface of oxide nanoparticles. It is seen that the Eg determined to give a value of 3.3eV for TiO2 before immersing in dyes, and immersing in dyes (N749 & N3) are (1.4 &1.6 eV) respectively. The structural properties (XRD), (FTIR) and (SEM) for the sample prepared were investigated and (J-V) characteristics was stu
... Show MorePolypyrrole (PPy) nanocomposites were prepared using chemical oxidation and were combined with manganese oxide (MnO2) nanoparticles. The PPY-MnO2 nanocomposite was synthesized by integrating PPy nanofibers with varying volume ratio percentages of MnO2 dopant (10, 30, and 50% vol. ratio). The structural features of the PPy and PPy-MnO2 nanocomposite were investigated using X-ray diffraction (XRD). Fourier transfor infrared (FTIR) spectroscopy was used to demonstrate the molecular structures of primary materials and the final product of PPy, MnO2, and PPy- MnO2 nanocomposites. Field Emission Scanning Electron Microscopy (FESEM) showed that the morphology of PPy consisted of a network of nanofibers. Increasing the volume ratios of ma
... Show MoreThe human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simu