Methylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilized crude oil revealed that 61.14 % of the initial content had been degraded, and GC fingerprinting of the utilized aliphatic compounds revealed significant reductions in C12, C13, C14, and C15. Globally this is the first time found a new strain of M. extorquens has the ability to degrade aliphatic hydrocarbons compound. Conventional PCR and gene sequencing revealed the presence of the facilitative methylotrophic bacteria in polluted areas in Basra. M. extorquens was dominant and showed a substantial ability to degrade crude oil which makes them an important tool to be employed in bioremediation.
Background: Diabetes is a metabolic disorder characterized by chronic hyperglycemia due to an inability to produce insulin. Uncontrolled or poorly controlled diabetes is clinically associated with increased susceptibility to delay healing. Many recent researches have shown that stem cell therapy can be the best choice for treatment of this disease. The aims of this research were investigating regeneration of pancreatic beta cells of diabetic induced rabbits after stem cell transplantation. Materials and Methods: 64 rabbits weighting an average of (2.5 - 3 kg) were used in this experimental study, and divided into 4 groups as follows; group A ( contains 16 healthy rabbits regarded as control group ) , Group B ( contains 16 diabetic rabbits
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreThe ability of using aluminum filings which is locally solid waste was tested as a mono media in gravity rapid filter. The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 20and 30 NTU); flow rate(30, 40, and 60 l/hr) and bed height (30and60)cm on the performance of aluminum filings filter media for 5 hours run time and compare it with the conventional sand filter. The results indicated that aluminum filings filter showed better performance than sand filter in the removal of turbidity and in the reduction of head loss. Results showed that the statistical model developed by the multiple linear regression was proved to be
valid, and it could be used to predict head loss in aluminum filings
The field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MoreThis study was conducted during the period 1/9/2014 – 1/2/2015 and aimed to identify the polymorphisms of IGF-1 gene in broiler chickens and their effects on some biochemical traits. A total of 300 one-day-old broiler chicks (Cobb500, n=150; Hubbard F-15, n=150) were evaluated in this study. Blood samples were individually collected from all birds for DNA extraction. PCR-RFLP method being used for determination the genotypes of IGF-1 gene which then correlated with biochemical traits studied. Cobb500 broilers with TT genotype had significantly (p˂0.05) higher serum triglycerides values than those of TC and CC genotypes. Low density lipoprotein (LDL) were significantly (p˂0.05) higher in Hubbard F-15 broilers with TT genotype than those
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThis paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MorePolyaniline organic Semiconductor polymer was prepared by oxidation polymerization by adding hydrochloric acid concentration of 0.1M and potassium per sulfate concentration of 0.2M to 0.1M of aniline at room temperature, the polymer was deposited at glass substrate, the structural and optical properties were studies through UV-VIS, IR, XRD measurements, films have been operated as a sensor of vapor H2SO4 and HCl acids.
In today's digital era, the importance of securing information has reached critical levels. Steganography is one of the methods used for this purpose by hiding sensitive data within other files. This study introduces an approach utilizing a chaotic dynamic system as a random key generator, governing both the selection of hiding locations within an image and the amount of data concealed in each location. The security of the steganography approach is considerably improved by using this random procedure. A 3D dynamic system with nine parameters influencing its behavior was carefully chosen. For each parameter, suitable interval values were determined to guarantee the system's chaotic behavior. Analysis of chaotic performance is given using the
... Show More