Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.
The article reflects the results of the analysis of the use of metaphors as one of the main means used by Lyudmila Ulitskaya when writing the novel “Sincerely Yours Shurik” to form the image of the main hero in the novel. The main purpose of the article is to consider metaphors, which helped the author to form the image of the main character Shurik in the text space through the stages of his life path, closely related to the people around him, who is always happy to be useful (hence the title "Sincerely Yours"), among which the female images of his relatives, girlfriends and others stand out as a special layer in the narrative. And in the course of the study, the following tasks were solved: the metaphors that make up the image of the
... Show More
In this paper, a compression system with high synthetic architect is introduced, it is based on wavelet transform, polynomial representation and quadtree coding. The bio-orthogonal (tap 9/7) wavelet transform is used to decompose the image signal, and 2D polynomial representation is utilized to prune the existing high scale variation of image signal. Quantization with quadtree coding are followed by shift coding are applied to compress the detail band and the residue part of approximation subband. The test results indicate that the introduced system is simple and fast and it leads to better compression gain in comparison with the case of using first order polynomial approximation.
This paper discusses the method for determining the permeability values of Tertiary Reservoir in Ajeel field (Jeribe, dhiban, Euphrates) units and this study is very important to determine the permeability values that it is needed to detect the economic value of oil in Tertiary Formation. This study based on core data from nine wells and log data from twelve wells. The wells are AJ-1, AJ-4, AJ-6, AJ-7, AJ-10, AJ-12, AJ-13, AJ-14, AJ-15, AJ-22, AJ-25, and AJ-54, but we have chosen three wells (AJ4, AJ6, and AJ10) to study in this paper. Three methods are used for this work and this study indicates that one of the best way of obtaining permeability is the Neural network method because the values of permeability obtained be
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreAllah, in his Holy Quran introduced great prophet stories so as to learn from. The greatness of these stories lies in Allah himself being the author. He portrays his characters, lays the plot, defines the tests and Al- Ibtilla, provides ways of being patient, using Duaa to end all hard tests and generously describing the greatness of his rewards to all those who are patient. The purpose of this research is to study selected English prophet stories for children on three levels, the stories ability to convey lessons and Islamic teachings to children who do not speak Arabic, the stories portray the Islamic concept of patience, the teaching and learning styles andstrategies that Allah uses with each prophet. The concept of patience is defined a
... Show MoreThe impact of COVID-19 pandemic on education models was mainly through the expansion of technology use in the different educational programs. Earlier impact of COVID-19 was manifested in the complete and sudden transition to distance education regardless of institution preparedness status. Gradually, many institutions are moving back to on-campus face-to-face education. However, others including all higher education institutions in Iraq are adopting the hybrid education model. This report presents part of the end of semester evaluation survey conducted at the University of Baghdad College of Pharmacy for the Spring 2021 semester. The survey aims to address points of strength and weakness associated with the hybrid education model and spe
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
This research is a study of the difficulties of learning the Arabic language that faces Arabic language learners in the Kurdistan Region, by revealing its types and forms, which can be classified into two categories:
The first type has difficulties related to the educational system, the source of which is the Arabic language itself, the Arabic teacher or the learner studying the Arabic language or the educational curriculum, i.e. educational materials, or the educational process, i.e. the method used in teaching.
The second type: general difficulties related to the political aspect, the source of which is the policy of the Kurdistan Regional Government in marginalizing the Arabic language and replacing the forefront of th
... Show More