Preferred Language
Articles
/
bsj-7559
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
A Comprehensive Review on Medical Image Steganography Based on LSB Technique and Potential Challenges

The rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Jan 30 2019
Journal Name
Journal Of The College Of Education For Women
Image Hiding Using Discrete Cosine Transform

Steganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.

View Publication Preview PDF
Publication Date
Mon Dec 10 2018
Journal Name
Aro-the Scientific Journal Of Koya University
Membrane Computing for Real Medical Image Segmentation

In this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon May 27 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Using Air Guide Net in Front of the Condenser on the Performance of Automobile Air Conditioning System

 

The work of this paper is an investigation to improve the condenser performance of the automobile air conditioning system by enhancing the air-side heat transfer from the condenser through the use of an air guide net installed in front of the condenser face which is basically an aluminum plate having a circular entrance shape for the air passage.  The A/C system was examined under two types of test. The first test was conducted the air guide net, while the second was done with the air guide net. The performances of the A/C system under these tests were compared. For the second type of test, the experiment was carried out with three different size of air guide net, three different circular diameters (2, 3 and 3.5 cm) a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Multi-Focus Image Fusion Based on Pixel Significance Using Counterlet Transform

Abstract

 The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test  images, and compared with some present methods.

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
A Software Defined Network of Video Surveillance System Based on Enhanced Routing Algorithms

Software Defined Network (SDN) is a new technology that separate the ‎control plane from the data plane. SDN provides a choice in automation and ‎programmability faster than traditional network. It supports the ‎Quality of Service (QoS) for video surveillance application. One of most ‎significant issues in video surveillance is how to find the best path for routing the packets ‎between the source (IP cameras) and destination (monitoring center). The ‎video surveillance system requires fast transmission and reliable delivery ‎and high QoS. To improve the QoS and to achieve the optimal path, the ‎SDN architecture is used in this paper. In addition, different routing algorithms are ‎used with different steps. First, we eva

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Wavenet (FWN) classifier for medical images

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

&n

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Medical Ultrasound Image Quality Enhancement and Regions Segmentation

     Medical Ultrasound (US) has many features that make it widely used in the world. These features are safety, availability and low cost. However, despite these features, the ultrasound suffers from problems. These problems are speckle noise and artifacts. In this paper, a new method is proposed to improve US images by removing speckle noise and reducing artifacts to enhance the contrast of the image. The proposed method involves algorithms for image preprocessing and segmentation. A median filter is used to smooth the image in the pre-processing. Additionally, to obtain best results, applying median filter with different kernel values. We take the better output of the median filter and feed it into the Gaussian filter, which then

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Crossref