Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the skip connections are redesigned to give a more reliable fusion of features. MSRD-UNet allows aggregation of contextual information, and the network goes without needing to increase the number of parameters or required floating-point operations (FLOPS). The proposed model was evaluated on three multimodal datasets: polyp, skin lesion, and nuclei segmentation. The obtained results proved that the MSDR-Unet model outperforms several state-of-the-art U-Net-based methods.
The problem of medical waste over the past tow decades has emerged as one of the most important issues.
Which have negative effects on health and the environment ,and as a result specialists looked into the field.
Public health and research issues . This phenomenon in all its dimensions and efforts made For their containment through the development of health and environmental controls for the disposal of such wastes.
In a safe manner starting form the source of these wastes and the various health organizations are finished The final treatment ,and this is why the producers of hazardous medical waste. &nb
... Show MoreAn image retrieval system is a computer system for browsing, looking and recovering pictures from a huge database of advanced pictures. The objective of Content-Based Image Retrieval (CBIR) methods is essentially to extract, from large (image) databases, a specified number of images similar in visual and semantic content to a so-called query image. The researchers were developing a new mechanism to retrieval systems which is mainly based on two procedures. The first procedure relies on extract the statistical feature of both original, traditional image by using the histogram and statistical characteristics (mean, standard deviation). The second procedure relies on the T-
... Show MoreMicroservice architecture offers many advantages, especially for business applications, due to its flexibility, expandability, and loosely coupled structure for ease of maintenance. However, there are several disadvantages that stem from the features of microservices, such as the fact that microservices are independent in nature can hinder meaningful communication and make data synchronization more challenging. This paper addresses the issues by proposing a containerized microservices in an asynchronous event-driven architecture. This architecture encloses microservices in containers and implements an event manager to keep track of all the events in an event log to reduce errors in the application. Experiment results show a decline in re
... Show MoreThis research examines the quantitative analysis to assess the efficiency of the transport network in Sadr City, where the study area suffers from a large traffic movement for the variability of traffic flow and intensity at peak hours as a result of inside traffic and outside of it, especially in the neighborhoods of population with economic concentration. &n
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
The aim of this research is to show the importance of the effective use
of the internet in academic libraries; to improve the services and to increase
the competence of librarians.
The research has given some recommendations to improve the quality
of services and the need for cooperative network among academic libraries.
Wireless Sensor Networks (WSNs) are promoting the spread of the Internet for devices in all areas of
life, which makes it is a promising technology in the future. In the coming days, as attack technologies become
more improved, security will have an important role in WSN. Currently, quantum computers pose a significant
risk to current encryption technologies that work in tandem with intrusion detection systems because it is
difficult to implement quantum properties on sensors due to the resource limitations. In this paper, quantum
computing is used to develop a future-proof, robust, lightweight and resource-conscious approach to sensor
networks. Great emphasis is placed on the concepts of using the BB8
Ultraviolet spectrophotometric studies for antibiotic (amino glycoside) derivatives including, Neomycin, Streptomycin, Gentamycin and Kanamycin with special reagents, which are benzoyl chloride; benzene sulfonyl chloride, toluenesulfonyl chloride and phthalic anhydride were made. Amino glycosides derivatives were followed through measurements of the ultraviolet absorbance (A) from which the absorptivity (ε) of the complexes was deduced and molar absorbances using Ultraviolet for products and calculate the number of reagents molecule that combine to amino glycosides.
Information security in data storage and transmission is increasingly important. On the other hand, images are used in many procedures. Therefore, preventing unauthorized access to image data is crucial by encrypting images to protect sensitive data or privacy. The methods and algorithms for masking or encoding images vary from simple spatial-domain methods to frequency-domain methods, which are the most complex and reliable. In this paper, a new cryptographic system based on the random key generator hybridization methodology by taking advantage of the properties of Discrete Cosine Transform (DCT) to generate an indefinite set of random keys and taking advantage of the low-frequency region coefficients after the DCT stage to pass them to
... Show More