Configured binary polymer blends of epoxy and Polyurethane was chosen varying proportions of these materials led to the production of homogeneous mixtures of Althermust Althermust and descent was poured polyurethane models required in the form of 4 mm thick plates
Thin films were prepared from poly Berrol way Ketrrukemaaih pole of platinum concentrations both Albaarol and salt in the electrolytic Alastontrel using positive effort of 7 volts on the pole and the electrical wiring of the membrane record
This research includes depositionof thin film of semiconductor, CdSe by vaccum evaporation on conductor polymers substrate to the poly aniline where, the polymer deposition on the glass substrats by polymerization oxidation tests polymeric films and studied the structural and optical properties through it,s IR and UV-Vis , XRD addition to thin film CdSe, on of the glass substrate and on the substrate of polymer poly-aniline and when XRD tests was observed to improve the properties of synthetic tests as well as the semiconductor Hall effect proved to improve the electrical properties significantly
This study is a complementary one to an extended series of research work that aims to produce a thermodynamiclly stable asphalt –sulfur blend. Asphalt was physically modified wiht different percentages of asphaltenes , oxidized asphaltenes and then mixed with sulfur as an attempt to obtaine a stable compatible asphalt-sulfur blend. The homogeneneity of asphalt-asphaltenes[oxidized asphaltenes]-sulfur blends were studied microscopically and the results are prsented as photomicrographs. Generally more stable and compatible asphalt-sulfur blends were obtained by this treatment.
A tungsten inert gas (TIG) welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15) min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring d
... Show MoreThe different parameters on mechanical and microstructural properties of aluminium alloy 6061-T6 Friction stir-welded (FSW) joints were investigated in the present study. Different welded specimens were produced by employing variable rotating speeds and welding speeds. Tensile strength of the produced joints was tested at room temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and analyzed by means of brinell hardness number . Besides to thess tests the bending properties investigat
... Show MoreUnsaturated polyester was used as a matrix which was filled with different percentages of cobalt ferrite using hand lay-up method. Cobalt ferrite was synthesized using solid state ceramic method with reagent of CoO and Fe2O3. Mechanical properties such tensile strength, Young's modulus and shore D hardness of the composite have been studied. All these properties have increased by 10% with increasing cobalt ferrite contents. Also the thermal properties such thermal conductivity and specific heat capacity are highly increased as the ferrite content increased, while the thermal diffusivity increased by 22 %. On the other hand dielectric strength of composite has been measured which increased by 50% by increasing the cobalt ferrite content.&
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreThe central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total
... Show MoreNatural fibers and particles reinforced composites are being broadly used due to their bio and specific properties such as low density and easy to machine and production with low cost. In this work, water absorption and mechanical properties such as tensile strength, flexural strength and impact strength of recycled jute fibers reinforced epoxy resin were enhanced by treating these fibers with alkaline solution. The recycled jute fibers were treated with different concentration of (NaOH) solution at (25 0C) for a period of (24) hours. From the obtained results, it was found that all these properties are improved when fibers treated with (7.5wt% NaOH) related to untreated fibers. Conversely, the mentioned properties of composit
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec