Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patients into two groups(severe cases and non-severe cases groups). Ferritin, lactate dehydrogenase LDH, D-dimer and CRP were markedly increased in COVID-19 patients in the first group (severe cases). Our findings imply that early measured levels of (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) are linked to a decreased probability of COVID-19 severity. Elevated levels of this biomarker may predict COVID severity development.
Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include
... Show Moreتلعب الاعتمادات المستندية دوراً كبيراً وخطيراً في التجارة الدولية باعتبارها إحدى أوسع أدوات الدفع انتشاراً في العالم سواءاً كان ذلك بالنسبة للمستورد أم للمصدر وتغطيتها للمخاطر المحتملة لكلا الطرفين، فهي تؤمن للمصدر استلام قيمة البضاعة بالكامل عند تنفيذها لشروط العقد، ويسمح للمستورد بعدم الدفع إلا بعد إتمام شحن البضاعة وتقديم المستندات المطلوبة واستلامها.
وتقوم المصارف التجارية المحل
... Show Moreأن صفة التغير المتسارع في نمط الحياة ولّد مبدأ اللايقين عند إتخاذ القرارات المالية لأي ظاهرة عموماً أو نشاط إقتصادي على وجه الخصوص. وهذا يتطلب الأستعانة بالأدوات الأحصائية كمنهج علمي يساعد في وصفها وتحليلها كمياً ومن ثم التنبؤ بها مستقبلاً كمحاولة لسبر غور اللايقين الذي يكتنف المستقبل كمجهول يتوجس منه الجميع. وقد أصبح متخذ القرار الأستثماري أو صاحب رأس المال وغيرهما من المضاربين والمتعاملين في الاسواق الما
... Show MoreThe aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
The goal of this research is to solve several one-dimensional partial differential equations in linear and nonlinear forms using a powerful approximate analytical approach. Many of these equations are difficult to find the exact solutions due to their governing equations. Therefore, examining and analyzing efficient approximate analytical approaches to treat these problems are required. In this work, the homotopy analysis method (HAM) is proposed. We use convergence control parameters to optimize the approximate solution. This method relay on choosing with complete freedom an auxiliary function linear operator and initial guess to generate the series solution. Moreover, the method gives a convenient way to guarantee the converge
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
يهدف هذا البحث إلى تحليل محتوى كتابي الحاسوب للمرحلة الإعدادية في جمهورية العراق وفقاً للتفكير المنطقي، واتبعت الباحثة منهج البحث الوصفي التحليلي، وتم توظيف أداة تحليل المحتوى، التي صُمِّمت وفقاً للعمليات العقلية المتضمنة في التفكير المنطقي بحسب العالم بياجيه ( Piaget )، واعتماد وحدة الفكرة (الصريحة) في عملية التحليل. تبين من نتائج هذا البحث أنَّ نسبة تضمين مهارات التفكير المنطقي في محتوى كتابي الحاسوب للمرحل
... Show Moreيُعد التنمر ظاهرة إجتماعية قديمة موجودة في جميع المجتمعات سواء أكان المجتمع صناعيًا أم ناميًا، كما يُعد من المفاهيم الحديثة نسبيًا، وربما يرجع لحداثة الإعتراف به نوعًا من أنواع العنف فضلاعن ندرة الدراسات التي تناولته وعدم وجود معيار محدد لتحديد السلوك الذي يعد تنمرًا أم عابرًا، لقد بدأ الأهتمام بدراسة التنمر في سبعينات القرن الماضي وأصبح موضعًا يحضى بأهتمام العديد في مختلف البلدان، وفي عصرنا الحالي تطورت
... Show MoreSub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static tim
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show More