Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
Loanwords are the words transferred from one language to another, which become essential part of the borrowing language. The loanwords have come from the source language to the recipient language because of many reasons. Detecting these loanwords is complicated task due to that there are no standard specifications for transferring words between languages and hence low accuracy. This work tries to enhance this accuracy of detecting loanwords between Turkish and Arabic language as a case study. In this paper, the proposed system contributes to find all possible loanwords using any set of characters either alphabetically or randomly arranged. Then, it processes the distortion in the pronunciation, and solves the problem of the missing lette
... Show MoreTigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and
... Show MoreIn this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show MoreAl2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
This study examines the news values employed by regional news agencies in the selection and dissemination of news concerning Iraqi affairs. Content analysis was conducted on a purposive sample of 596 news articles sourced from official websites of news agencies, including Iraqi, Turkish, and Iranian agencies. The research aims to identify the underlying criteria used by these agencies in determining news suitability for publication.
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga
... Show MoreAbstract
This research aims to develop a unit as part of a sixth-grade Arabic language textbook and measure its effectiveness in the development of twenty-first-century skills of female students. The author adopted the experimental approach with a quasi-experimental design of the pre-post single-group. A list of the major skills was derived from the framework for the 21st-century skills of the mother tongue that was developed by the Partnership for 21st-Century Skills and reviewed and adjusted by some specialists. According to their views, the unit was developed. The study targeted 15 sub-skills falling under three main skills. The results of the study showed the effectiveness of the developed unit in the develo
... Show MoreThis is a descriptive study that used the survey method, it’s aimed to identify the topics and frameworks of diplomatic and political issues covered by the news of the website of the Iraqi Ministry of Foreign Affairs, through the content analysis method applied on a sample selected in a systematic random manner for news published in the year 2021. The sample included (191) news equivalent to (20%) of the total study population of (942). The study reached some results, the most important of which were as follows: The political issue, in its general sense, grabbed the most prominent attention among the various issues and events focused on by Iraqi diplomacy: "international cooperation", "bilateral cooperation", and then "regional politic
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More