Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show MorePseudomonas aeruginosa has variety of virulence factors that contribute to its pathogenicity. Therefore, rapid detection with high accuracy and specificity is very important in the control of this pathogenic bacterium. To evaluate the accuracy and specificity of Polymerase Chain Reaction (PCR) assay, ETA and gyrB genes were targeted to detect pathogenic strains of P. aeruginosa. Seventy swab samples were taken from patients with infected wounds and burns in two hospitals in Erbil and Koya cities in Iraq. The isolates were traditionally identified using phenotypic methods, and DNA was extracted from the positive samples, to apply PCR using the species specific primers targeting ETA, the gene encoding for exotoxin A, and gyrB gene. The res
... Show MoreFive Saccharomyces cerevisiae isolated from the ability of chitinase production from the isolates were studied. Quantitative screening appeared that Saccharomyces cerevisiae S4 was the highest chitinase producer specific activity 1.9 unit/mg protein. The yeast was culture in liquid and solid state fermentation media (SSF). Different plant obstanases were used for (SSF) with the chitine, while liquid media contained chitine with the diffrented nitrogen source. The favorable condition for chitinase producers were incubated at 30 ºC at pH 6 and 1% colloidal chitine.
Due to its association with hepatocellular carcinoma and being one of the ten most common malignancies worldwide, hepatitis C viral infection has become a severe public health concern. Therefore, establishing an accurate, reliable and sensitive diagnostic test for this infection is strongly advised. Real-time polymerase chain reaction (PCR) has been created to achieve this purpose. The current study was established to investigate the hepatitis C virus among Iraqi patients with chronic renal failure and to detect the virus immunologically by the fourth generation enzyme-linked immunosorbent assay technique and molecularly by real-time PCR. As a result, out of 50 patients with chronic renal failure undergoing dialysis, 39 patients tes
... Show MoreGe-Au infrared photoconductive detection was prepared from germanium single crystal which were doped with different gold concentration using thermal evaporation. The spectral resonsivity (Rλ), spectral detectivity (D*) were determined as function of wavelength, also the resistance, conductivity in dark and with illumination to infrared radiation, the gain and relative photo response have been measured with different gold concentration. Remarkable improvements in the photoresponse gain were observed for the highest resistance specimen at the expense of spectral detectivity values.
Klebsiella pneumoniae is an adaptable pathogen that forms biofilms on a variety of surfaces. This study's objective was to identify the presence of fimbrial genes (types 1 and 3) in K. pneumoniae strains isolated from various clinical sources based on their antibiotic resistance and ability to form biofilms. According to identification utilizing the vitek 2 technology and confirmation by molecular identification targeting the 16S rRNA gene with a particular primer, forty isolates were identified from clinical specimens. The vitek 2 compact system was utilized to evaluate the antibiotic susceptibility of all the isolates. The findings revealed a range of resistance percentages, including 52.5% for Penicillin, 40.5% for Trimethoprim/S
... Show More