Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
The demand for single photon sources in quantum key distribution (QKD) systems has necessitated the use of weak coherent pulses (WCPs) characterized by a Poissonian distribution. Ensuring security against eavesdropping attacks requires keeping the mean photon number (µ) small and known to legitimate partners. However, accurately determining µ poses challenges due to discrepancies between theoretical calculations and practical implementation. This paper introduces two experiments. The first experiment involves theoretical calculations of µ using several filters to generate the WCPs. The second experiment utilizes a variable attenuator to generate the WCPs, and the value of µ was estimated from the photons detected by the BB
... Show MoreIn order to scrutinize the impact of the decoration of Sc upon the sensing performance of an XN nanotube (X = Al or Ga, and XNNT) in detecting sarin (SN), the density functionals M06-2X, τ-HCTHhyb, and B3LYP were utilized. The interaction of the pristine XNNT with SN was a physical adsorption with the sensing response (SR) of approximately 5.4. Decoration of the Sc metal into the surface of the AlN and GaN led to an increase in the adsorption energy of SN from −3.4 to −18.9, and −3.8 to −20.1 kcal/mol, respectively. Also, there was a significant increase in the corresponding SR to 38.0 and 100.5, the sensitivity of metal decorated XNNT (metal@XNNT) is increased. So, we found that Sc-decorating more increases the sensitivity of GaNN
... Show MorePolycystic ovary syndrome (PCOS) is one of the most common endocrine disorder. To determine the metabolic disorders in women with PCOS, (25) women with PCOS ages (15 - 47) years have been investigated and compared with (20) healthy individuals. All the studied groups were carried out to measure fasting blood sugar, (anti-GAD Ab, anti ?-islet cell Ab by IFAT) and measured insulin level by ELISA. There was significant elevation in the concentration of fasting blood sugar than in control groups (p ? 0.05) and there was negative results for anti-GAD Ab and anti ?-islet cell Ab by IFAT test for serum of women with PCOS, while there was significant differences in the insulin level for women with PCOS compared with control groups (p ? 0.05), these
... Show MoreThe Internet of Things (IoT) has significantly transformed modern systems through extensive connectivity but has also concurrently introduced considerable cybersecurity risks. Traditional rule-based methods are becoming increasingly insufficient in the face of evolving cyber threats. This study proposes an enhanced methodology utilizing a hybrid machine-learning framework for IoT cyber-attack detection. The framework integrates a Grey Wolf Optimizer (GWO) for optimal feature selection, a customized synthetic minority oversampling technique (SMOTE) for data balancing, and a systematic approach to hyperparameter tuning of ensemble algorithms: Random Forest (RF), XGBoost, and CatBoost. Evaluations on the RT-IoT2022 dataset demonstrat
... Show MoreThis study aimed to investigate the prevalence of intestinal helminth infections in humans and detect Toxocara spp. in cats, with a focus on assessing the impact of age and gender on infection rates. Traditional diagnostic methods have historically limited the accurate identification of helminth infections in humans. Analysis of 450 human stool samples revealed an overall helminth infection rate of 5.7% using conventional techniques. The specific infection rates were 0.4% for Strongyloides stercoralis, 0.6% for Schistosoma mansoni, 1.7% for Hymenolepis nana, and 2.8% for Ascaris lumbricoides. Notably, no infections were recorded in the 30–39 and ≥40-year age groups, while the highest infection rate (16.3%, P≤0.01) was observed in indi
... Show MoreBackground: Candida tropicalis is one of the most causes of vulvovaginal candidiasis (VVC) in women. Systemic candidiasis and candidemia may also occur in pregnancies. Objective: This study was carried out to detect and isolate of this yeast from aborted placenta, which may cause severe complications such as spontaneous abortion. Materials and methods: Fresh aborted placenta were collected and washed by normal saline to remove the blood. Then, cut it into portions and place it in test tube containing 5 ml of normal saline. Finally, shake for 10 minutes, after that, cultured for microbial isolation. Isolation and detection were done by some conventional methods with Api candida and CHROMagar. Results: The results showed that four iso
... Show MoreVisceral leishmaniasis (VL) or kala-azar is one of the worlds most neglected tropical diseases in mortality and fourth in morbidity, rK39 dipstick was used to diagnose the suspected infected patients as cheapest simple technique which can differentiate recent from chronic infection, for disease out-coming, naïve T-lymphocyte cells should be differentiated into pathogen-specific immunity responses, such as T-helper 1(Th-1) or (Th-2). HLA-G is a special protein defined as nonclassical HLA class I molecule can suppress the immune system through prevention of T-cell function by foul all T-cell mechanisms. So, this study aimed to detect and evaluate the level of sHLA-G in the sera of patients infected with VL. The results showed that there was
... Show Moren this study, 25 clinical isolates of Proteus spp. were collected from urine, wounds and burns specimens from different hospitals in Baghdad city, all isolates were identified by using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifies as Proteus mirabilis and 10 (40 %) isolates were Proteus vulgaris. The susceptibility of P. mirabilis and P. vulgaris isolates towards cefotaxime was (66.6 %) and (44.4 %) respectively; while the susceptibility of P. mirabilis and P. vulgaris isolates towards ceftazidime was (20%). Extended spectrum β-lactamses producing Proteus was (30.7 %). DNA of 10 isolates of P. mirabilis and 4 isolates of P. vulgaris were extracted and de
... Show MoreTo determine the relationship between Helicobacter pylori infection and reproduction disorder (recurrent spontaneous abortion), twenty women patients who undergo spontaneous abortion during first trimester of pregnancy (20-38) years and have been investigated from 2015/12/1 -2016/3/1 and compared to fifteen healthy individuals. All subjects were carried out to measure anti-H. pylori IgA and anti- H. pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA). There was significant elevation (p≤ 0.05) in concentration of anti- H. pylori IgG Abs (6.30± 0.99) compared to control group (4.48± 0.61) and IgA Abs (5.42 ± 0.90 U /ml) as compared to control group (3.92 ± 0.41 U/ml). The percentage of H. pylori IgG and IgA was 20% and 25
... Show MoreIntrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope
... Show More