Preferred Language
Articles
/
bsj-7418
Small Horizontal Wind Turbine Design and Aerodynamic Analysis Using Q-Blade Software
...Show More Authors

Wind energy is one of the most common and natural resources that play a huge role in energy sector, and due to the increasing demand to improve the efficiency of wind turbines and the development of the energy field, improvements have been made to design a suitable wind turbine and obtain the most energy efficiency possible from wind. In this paper, a horizontal wind turbine blade operating under low wind speed was designed using the (BEM) theory, where the design of the turbine rotor blade is a difficult task due to the calculations involved in the design process. To understand the behavior of the turbine blade, the QBlade program was used to design and simulate the turbine rotor blade during working conditions. The design variables such as (chord length and torsion angle) affecting the performance of wind turbines were studied. Aileron (NACA4711) was selected for sixteen different sections of the blade with a length of (155 cm) both (power factor, torque coefficient, lift coefficient, drag coefficient, lift-to-drag coefficient ratio) where high-accuracy results were obtained and it was found that the best performance in which the turbine rotor can operate is when the(tip speed ratio) is equal to (7). In addition, a power factor was obtained (Cp = 0.4742), not exceeding the Betz limit (0.59%). It is good efficiency for a small wind turbine, and it turns out that the design of a small horizontal wind turbine with three blades is suitable for working in areas with low wind speed.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Evaluation of Rutting in Conventional and Rubberized Asphalt Mixes Using Numerical Modeling Under Repeated Loads
...Show More Authors

This research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Research Journal Of Chemistry And Environment
Biodiesel from fresh and waste sunflower oil using calcium oxide catalyst synthesized from local limestone
...Show More Authors

Scopus (9)
Scopus
Publication Date
Tue Jan 01 2019
Journal Name
Proceedings Of The 5th International Conference On Information Systems Security And Privacy
Identification and Extraction of Digital Forensic Evidence from Multimedia Data Sources using Multi-algorithmic Fusion
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Geological Journal
Structural Interpretation of Yamama and Naokelekan Formations in Tuba Oil Field Using 2D Seismic Data
...Show More Authors

This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jul 30 2024
Journal Name
Iraqi Journal Of Science
Frame-Based Change Detection Using Histogram and Threshold to Separate Moving Objects from Dynamic Background
...Show More Authors

      Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Jul 04 2025
Journal Name
Computational And Theoretical Chemistry
Coronene and BN isosters of coronene: Revealing the electron density distribution using magnetic shielding maps
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Diagnosing Water Problem for Asmari Reservoir in Abu Ghirab Oilfield Using Analytical and Numerical Approaches
...Show More Authors

Asmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reser

... Show More
Crossref (1)
Crossref
Publication Date
Sun Aug 28 2016
Journal Name
World Journal Of Pharmacy And Pharmaceutical Sciences
AN INSIGHT ON THE IDENTIFICATION OF CANCER STEM CELLS USING NOVEL IMMUNOLOGICAL AND MOLECULAR STRATEGIES
...Show More Authors

Cancer stem cells (CSCs) are defined as a population of cells present in tumours, which can undergo self-renewal and differentiation. Identification and isolation of these CSCs using putative surface markers have been a priority of research in cancer. With this background we selected pancreatic normal and tumor cells for this study and passaged them into animal tissue culture medium. Further staining was done using alkaline phosphatase and heamatoxilin staining. Blue to purple colored zones in undifferentiated pluripotent stem cells and clear coloration in the chromatin material indicated pancreatic cells. Further studies on the cell surface marker CD 44 were done using ELISA. For this, the protein was extracted from cultivated normal and t

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 29 2016
Journal Name
Al- Mustansiriyah J. Sci.
The Approximate Solution of Newell Whitehead Segel and Fisher Equations Using The Adomian Decomposition Method
...Show More Authors

In the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.

View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Optimum Dimensions of Hydraulic Structures and Foundation Using Genetic Algorithm coupled with Artificial Neural Network
...Show More Authors

      A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga

... Show More
View Publication Preview PDF