Preferred Language
Articles
/
bsj-7309
The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane
...Show More Authors

The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and estimate the average fiber sizes. The membrane porosity percentage was measured using the dry-wet weight method. Also, a dynamic mechanical analyzer was used to determine the mechanical strength properties (tensile strength and Young's modulus) (DMA). The obtained results revealed that the polymer concentration and flow rate mainly affect the porosity and fiber size in ENMs. Increasing the polymer concentration improves the strength and flexibility, while the flow rate did not show a clear effect on the mechanical strength of ENMs. Both fibers collecting speed and spinning distance did not clearly impact the membrane morphology. ENMs flexibility significantly increased with increasing the collector speed and decreasing the spinning distance. Strong and flexible ENMs with small fibers can be fabricated using 10% PAN/DMF at a flow rate of 1 mL/h, collector speed of 140 rpm, and spinning distance of 13 cm.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Effect Ti/AlTiN Multilayer Coating on the Crater Wear Process of Cutting Tool and Tribological Properties
...Show More Authors

Tool wear is a major problem in machining operations because the resulting material loss gradually changes of the machine tool. There many factors may leads to material loss like; friction, corrosion, and also it’s happened by rubbing during machining processes between the work piece and the tool. Dimensional accuracy of the work piece, and also the surface finish will be reducing by tool wear. It can also increase cutting force. In this study, we focused on the effect of the coating process on crater wear problems. Crater wear is caused by the flow between the chip and the rake face of the tool, whereas flank wear is caused by the contact between the tool and the work piece. In reducing crater wear, aluminum titanium nitride (AlTiN) u

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Effect of the Concentration of Copper on the Properties of Copper Sulfide Nanostructure
...Show More Authors

Nanoparticles of copper sulfide have been prepared by simple reaction between using copper nitrate with different concentrations ratio 0.1, 0.3, and 0.5 mM, thiourea by a simple chemical route. The prepared Nano powders have been deposited onto glass substrates by casting method at 60°C. The structure of the product Nano- films has been studied by x-ray diffraction, where the patterns showed that all the samples have a hexagonal structure of covellite copper sulfide with the average crystalline sizes 14.07- 16.51 nm. The morphology has been examined by atomic force microscopy, and field emission scan electron microscopy. The AFM images showed particles with almost spherical and rod shapes with average diameter sizes of 49.11- 90.64 nm.

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
The Influence of Design and Technological Parameters on the MAF Process
...Show More Authors

Abstract

 Experimental work from Magnetic Abrasive Finishing (MAF) tests was carried out design parameters (amplitude, and number of cycle which are formed the shape of electromagnetic pole), and technological parameters (current, cutting speed, working gap, and finishing time) all have an influence on the mechanical properties of the surface layer in MAF process. This research has made to study the effect of design and technological parameters on the surface roughness (Ra), micro hardness (Hv) and material removal (MR) in working zone. A set of experimental tests has been planned using response surface methodology according to Taguchi matrix (36) with three levels and six factors

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Effect of Al2O3 Particles and Precipitation Hardening on the Properties of Cast 332 Aluminum Alloy
...Show More Authors

In this work, 332 Al alloy was prepared and reinforced with (0.5% and 1%) nano-Al2O3 particles. The prepared unreinforced and reinforced 332 Al alloy with nano-Al2O3 were solution heat treated (T6) at 510 ̊C and aged at 225 ̊C with different times (1, 3, and 5 h). Hardness test was performed on all the prepared alloys. All prepared alloys were dry slided under different applied loads (5, 10, 15, and 20 N) against steel counterface surface using pin on disk apparatus. The results showed that refinement effect was observed after addition of nano-Al2O3 particles and a change in silicon morphology after performing the solution heat treatment. The results also showed that har

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Study the Characterization of Adding Polymer-Surfactant Agent on the Drag Reduction Phenomena in Pipeline Flow System
...Show More Authors

  Abstract    

In this study, the effect of carboxylic methyl cellulose (CMC), and sodium dodcyl benzene sulfonate (SDBS) as an aqueous solution on the drag reduction was investigated. Different concentrations of (CMC) and (SDBS) such as (50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ppm) were used to analyze the aqueous solution properties, including surface tension, conductivity, and shear viscosity. The optimum four concentrations (i.e., 50, 100, 200, and 300 ppm) of fluid properties were utilized to find their effect on the drag reduction. Two different PVC pipe diameters (i.e., 1" and 3/4") were used in this work. The  results showed that blending CMC with SDBS gives

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 18 2020
Journal Name
Baghdad Science Journal
Effect of CO2 Laser Irradiation on the Topographic and Optical Properties of CdO Thin Films
...Show More Authors

     In this study, cadmium oxide (CdO) was deposited on glass bases by thermal chemical spraying technique at three concentrations (0.05, 0.1, 0.15) M and then was irradiated by CO2 laser with 10.6 μm wave length and 1W power. The results of the atomic force microscope AFM test showed that the surfaces of these CdO thin films were homogenous and that the laser irradiated effect resulted in decreasing the roughness of the surface as well as the heights of the granular peaks, indicating a greater uniformity and homogeneity of the surfaces. The optical properties were studied to determine laser effect. The results of optical tests of these thin films showed that the photoluminescence spectra and absorption s

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect Different Radioactive Dose on Mechanical Properties of Composite Material from Novolak Resin Exposure to High – Energy Radiation
...Show More Authors

The research involves using phenol – formaldehyde (Novolak) resin as matrix for making composite material, while glass fiber type (E) was used as reinforcing materials. The specimen of the composite material is reinforced with (60%) ratio of glass fiber.

      The impregnation method is used in test sample preparation, using molding by pressure presses.

      All samples were exposure to (Co60) gamma rays of an average energy (2.5)Mev. The total doses were (208, 312 and 728) KGy.

      The mechanical tests (bending, bending strength, shear force, impact strength and surface indentation) were performed on un irradiated and irrad

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 25 2017
Journal Name
Biomedical And Pharmacology Journal
Effect of the Addition of Polyamide (Nylon 6) Micro-Particles on Some Mechanical Properties of RTV Maxillofacial Silicone Elastomer Before and After Artificial Aging
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
The Effect of Tool Path Strategy on Mechanical Properties of Brass (65-35) in Single Point Incremental Sheet Metal Forming (SPIF)
...Show More Authors

In this paper, three tool paths strategies; iso-planar, helical and adaptive have been implemented to investigates their effect on the mechanical properties of Brass 65-35 formed by single point incremental sheet metal forming process. To response this task, a fully digital integrated system from CAD modeling to finished part (CAD/CAM) for SPIF process has been developed in this paper.
The photo-micrographs shows an identical grain formation due to the plastic deformation of the incremental forming process, change in the grain shape and size was observed. It's found that the adaptive tool path play a significant role to increase the hardness of the formed specimen from (48 to 90 HV) and the grain texture of the formed specimen found a

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Thu Sep 11 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The effect of adding single walled carbon nanotube with different concentrations on mechanical properties of heat cure acrylic denture base material
...Show More Authors

Background: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight

... Show More
View Publication Preview PDF