The electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and estimate the average fiber sizes. The membrane porosity percentage was measured using the dry-wet weight method. Also, a dynamic mechanical analyzer was used to determine the mechanical strength properties (tensile strength and Young's modulus) (DMA). The obtained results revealed that the polymer concentration and flow rate mainly affect the porosity and fiber size in ENMs. Increasing the polymer concentration improves the strength and flexibility, while the flow rate did not show a clear effect on the mechanical strength of ENMs. Both fibers collecting speed and spinning distance did not clearly impact the membrane morphology. ENMs flexibility significantly increased with increasing the collector speed and decreasing the spinning distance. Strong and flexible ENMs with small fibers can be fabricated using 10% PAN/DMF at a flow rate of 1 mL/h, collector speed of 140 rpm, and spinning distance of 13 cm.
In this paper, three tool paths strategies; iso-planar, helical and adaptive have been implemented to investigates their effect on the mechanical properties of Brass 65-35 formed by single point incremental sheet metal forming process. To response this task, a fully digital integrated system from CAD modeling to finished part (CAD/CAM) for SPIF process has been developed in this paper.
The photo-micrographs shows an identical grain formation due to the plastic deformation of the incremental forming process, change in the grain shape and size was observed. It's found that the adaptive tool path play a significant role to increase the hardness of the formed specimen from (48 to 90 HV) and the grain texture of the formed specimen found a
Background: The most widely used material for fabrication of denture base is poly methyl methacrylate, despite its popularity, the main problems associated with it as a denture base material are poor strength particularly under fatigue failure inside the patient mouth, impact failure outside the patient mouth, which are the main causes for fracture of denture, several studies was done to increase mechanical properties of denture base. The present study was conducted to evaluate and compare the effect of addition single walled carbon nanotubes in different concentrations to polymethyl methacrylate on some mechanical properties (surface hardness, surface roughness, impact strength and transverse strength). Materials and methods: Forty eight
... Show MoreThe activation energy and optical band gap of different regions (p-type) polysilicon have been measured. Both microscopic studies and current-voltage characteristics of diodes prepared on different surface regions were carried out. Comparison of diodes parameters and microscopic studies indicate that the type of angles between boundaries has a significant effect on diodes parameters while the boundary lengths per unit area has less effect. The mechanism of Al-interaction with grain boundaries and their intersecting points at different temperature were also studies. The X-ray fluorescence spectrometry has been used for detection of diffused A1%.
In this work, we studied the effect of power variation on inductively coupled plasma parameters using numerical simulation. Different values were used for input power (750 W-1500 W), gas temperature 300K, gas pressure (0.02torr), 5 tourns of the copper coil and the plasma was produced at radio frequency (RF) 13.56 MHZ on the coil above the quartz chamber. For the previous purpose, a computer simulation in two dimensions axisymmetric, based on finite element method, was implemented for argon plasma. Based on the results we were able to obtain plasma with a higher density, which was represented by obtaining the plasma parameters (electron density, electric potential, total power, number density of argon ions, el
... Show MoreThis paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.
... Show MoreThis search study the effect of particle size of graphite on the mechanical and thermal properties of epoxy composites, where graphite adopted with particle sizes (45,53,75) ?m, respectively, and the percentages by weight (0,1,3,5,7,9)% for each size of this three particle sizes.Mechanical properties represented by the bending (three-point bending) and through which the conclusion is bending stress and modulus of elasticity, thermal properties were either through thermal conductivity tests.The results showed that the ratio(1%) is the maximum value of bending stress at the three particle size and the (45 ?m) is the maximum.Thermal conductivity result show is the maximum value at ratio (1%) of particle size(53 ?m)
Abstract
In this research, the morphology and mechanical properties of (Epoxy/PVC) blend were investigated. (EP/PVC) blend was prepared by manual mixing of epoxy resin with different weight ratios of (Poly vinyl chloride (PVC) after dissolving it in cyclohexanon). Five sheets of polymer blends in wt% included (0%, 5%, 10%, 15% and 20%) of PVC were prepared at room temperature. Tests were carried out to study some mechanical properties for these blends and compared with the properties of pure epoxy. The morphology of the prepared materials was examined to study the compatibility nature between the two polymers under work. It was found that the best ratio of addition is (20%) of PVC.
... Show MoreAbstract
In the present work the effect of bearing compliance on the performance of high speed misaligned journal bearing lined with a compliant PTFE liner lubricated with bubbly oil at high speeds has been studied. The effect of induced oil film temperature due to shearing effect has been implemented. Hydrodynamic effect of the complaint bearing and the influence of aerated oil have been examined by the classical thermohydrodynamic lubrication theory modified to include the effect of oil film turbulence and oil film temperature with suitable models for bubbly oil viscosity and density. The effect of liner elastic deformation has been implemented by using Winkler model. The effects of variable density and s
... Show MoreMany designs have been suggested for unipolar magnetic lenses based on changing the width of the inner bore and fixing the other geometrical parameters of the lens to improve the performance of unipolar magnetic lenses. The investigation of a study of each design included the calculation of its axial magnetic field the magnetization of the lens in addition to the magnetic flux density using the Finite Element Method (FEM) the Magnetic Electron Lenses Operation (MELOP) program version 1 at three different values of current density (6,4,2 A/mm2). As a result, the clearest values and behaviors were obtained at current density (2 A/mm2). it was found that the best magnetizing properties, the high
... Show More