Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that represents the relationship between the compared texts and extracts the degree of similarity between them. Representing a text as a semantic network is the best knowledge representation that comes close to the human mind's understanding of the texts, where the semantic network reflects the sentence's semantic, syntactical, and structural knowledge. The network representation is a visual representation of knowledge objects, their qualities, and their relationships. WordNet lexical database has been used as a knowledge-based source while the GloVe pre-trained word embedding vectors have been used as a corpus-based source. The proposed method was tested using three different datasets, DSCS, SICK, and MOHLER datasets. A good result has been obtained in terms of RMSE and MAE.
A- The research problem: the research problem which is the garments industry, as a
whole it does not rely on a single system in the sizes of the clothing and the working
companies, see that it is not plausible that the sizes be unificd and consistent in all companies.
The current sizes in the domestic Iraqi markets are not suitable for some females ,on the other
hand the Iraqi industry suffers the lack of a modern standard for some Iraqis female bodies.
B- The Signifiance of the research: lies in the study of the diversity of the human body
sizes and naming them to reflect the desires and requirements of the consumer and try to find
a method to meet their expectations as well as to raise the level of garments industr
The measurement of minority carrier lifetime (MCLT) ofp-n Si fabricated with aid of laser doping technique was reported. The measurement is achieved by using open circuit voltage decay (OCVD) technique. The experiment data confirms that the value of MCLT and proftle of Voc decay were very sensitive to the doping laser energy.
The aim of the research is to identify the losses resulting from the terrorist operations and then find a proposed accounting treatment for the losses resulting from the terrorist operations and to indicate their impact on disclosure in the financial statements by reviewing the international standards and local rules and the unified accounting system and not dealing with these losses, Of the financial statements and therefore adversely affect the accounting disclosure as well as the weak commitment of economic units to apply the requirements of accounting measurement and disclosure of losses of terrorist operations in a manner consistent with local and international standards to achieve the Reliability in the financial statement.
OpenStreetMap (OSM) is the world’s biggest publicly licensed geographic data collection. Because OSM is rapidly being used in a wide range of applications, researchers have focused their efforts on determining its quality. The OSM buildings data quality is still ambiguous, due to the limitations, and a few researchers have evaluated the OSM buildings data quality through difficulties where the authoritative data are not obtainable. The focus of this research is to analyze and assess the accuracy of OSM buildings including completeness, and positional accuracy methods. Two different study areas in Baghdad city-Iraq have been investigated: Al-Rasheed and Al-Karrada. The process of the (OSM) data evaluation involved identifying the correspon
... Show MoreThe uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreThe pilgrimage takes place in several countries around the world. The pilgrimage includes the simultaneous movement of a huge crowd of pilgrims which leads to many challenges for the pilgrimage authorities to track, monitor, and manage the crowd to minimize the chance of overcrowding’s accidents. Therefore, there is a need for an efficient monitoring and tracking system for pilgrims. This paper proposes powerful pilgrims tracking and monitoring system based on three Internet of Things (IoT) technologies; namely: Radio Frequency Identification (RFID), ZigBee, and Internet Protocol version 6 (IPv6). In addition, it requires low-cost, low-power-consumption implementation. The proposed
Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor
... Show More