Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that represents the relationship between the compared texts and extracts the degree of similarity between them. Representing a text as a semantic network is the best knowledge representation that comes close to the human mind's understanding of the texts, where the semantic network reflects the sentence's semantic, syntactical, and structural knowledge. The network representation is a visual representation of knowledge objects, their qualities, and their relationships. WordNet lexical database has been used as a knowledge-based source while the GloVe pre-trained word embedding vectors have been used as a corpus-based source. The proposed method was tested using three different datasets, DSCS, SICK, and MOHLER datasets. A good result has been obtained in terms of RMSE and MAE.
Finding similarities in texts is important in many areas such as information retrieval, automated article scoring, and short answer categorization. Evaluating short answers is not an easy task due to differences in natural language. Methods for calculating the similarity between texts depend on semantic or grammatical aspects. This paper discusses a method for evaluating short answers using semantic networks to represent the typical (correct) answer and students' answers. The semantic network of nodes and relationships represents the text (answers). Moreover, grammatical aspects are found by measuring the similarity of parts of speech between the answers. In addition, finding hierarchical relationships between nodes in netwo
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreRecommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n
... Show MoreBased on the German language department’s theoretical and practical aspects as well as educational programs, the present study discusses the semantic relations in text sentences and their role in the science of translation. Through clarifying the semantic relationship between the text sentence and the methods used to express a news item, a situation or an occurrence and through the statement of the multiple theoretical semantic structures of the text’s construction and interrelation, a translator can easily translate a text into the target language.
It is known that language learners face multiple difficulties in writing and creating an inte
... Show MoreThe recent development in communication technologies between individuals allows for the establishment of more informal collaborative map data projects which are called volunteered geographic information (VGI). These projects, such as OpenStreetMap (OSM) project, seek to create free alternative maps which let users add or input new materials to the data of others. The information of different VGI data sources is often not compliant to any standard and each organization is producing a dataset at various level of richness. In this research the assessment of semantic data quality provided by web sources, e.g. OSM will depend on a comparison with the information from standard sources. This will include the validity of semanti
... Show MoreThe recent development in communication technologies between individuals allows for the establishment of more informal collaborative map data projects which are called volunteered geographic information (VGI). These projects, such as OpenStreetMap (OSM) project, seek to create free alternative maps which let users add or input new materials to the data of others. The information of different VGI data sources is often not compliant to any standard and each organization is producing a dataset at various level of richness. In this research the assessment of semantic data quality provided by web sources, e.g. OSM will depend on a comparison with the information from standard sources. This will include the validity of semantic accuracy a
... Show MoreIn education, exams are used to asses students’ acquired knowledge; however, the manual assessment of exams consumes a lot of teachers’ time and effort. In addition, educational institutions recently leaned toward distance education and e-learning due the Coronavirus pandemic. Thus, they needed to conduct exams electronically, which requires an automated assessment system. Although it is easy to develop an automated assessment system for objective questions. However, subjective questions require answers comprised of free text and are harder to automatically assess since grading them needs to semantically compare the students’ answers with the correct ones. In this paper, we present an automatic short answer grading metho
... Show MoreVarious semantic innovations and expansions have been tackled as factors and sources of neos. A variety of internal (linguistic) and external (extra-linguistic) motives and motifs leads to the appearance of new terms causing such changes in the political language. Some statesmen are productive in introducing new terms and creative in manipulating expressions and meanings.
New words are nonces that get metaphorical expansion for quadrilateral motivations resting on extra meaning innovation, new terms at the semantic expansions to be honed as neos. In tracing the phases of the semantic processes of neos and hulks, lexical and semantic changes might be of widening or narrowing of refe
... Show MoreRecent studies have tended to look at Mottagorat texts for seeking more of the information provided by the book for the reader, has been known by several terms Mottagorat texts, including thresholds, including the margins of the text and the parallel texts, and came this difference, according to researchers who ate the subject of research and investigation. Thus, the researchers assert that all these texts must be subjected to provide information even if propaganda of the text. Hence arose the importance of these texts in Informatics scientific material being wrapped body of the text as well as being propaganda material to evoke the recipient to read, and then to the importance of this topic, the search came on five chapters, the first c
... Show More