In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the functionally
graded samples were enhanced by 43.69% and 52.74%, respectively, if loaded from the alumina-rich side.
On the other hand, when loading (FGM) from the epoxy side, the amount of decrease in bending resistance
was 122.4% while the improvement in bending modulus was 81.11% compared to pure epoxy. Scanning
electron microscopy (SEM) revealed the fracture surface of the impact samples and the gradient scattering of
nanoparticles in the epoxy matrix. Numerous applications can be used to manufacture the functionally
graded material by centrifugal casting method, including for the manufacture of gears and all bending
applications such as leaf springs.
The influence of pre- shot peening and welding parameters on mechanical and metallurgical properties of dissimilar and similar aluminum alloys AA2024-T3 and AA6061-T6 joints using friction stir welding have been studied. In this work, numbers of plates were equipped from sheet alloys in dimensions (150*50*6) mm then some of them were exposed to shot peening process before friction stir welding using steel ball having diameter 1.25 mm for period of 15 minutes. FSW joints were manufactured from plates at three welding speeds (28, 40, 56 mm/min) and welding speed 40mm/min was chosen at a rotating speed of 1400 rpm for welding the dissimilar pre- shot plates. Tow joints were made at rotational speed of 1000 rpm and welding speed of 40m/min f
... Show Moreالغلط في القانون الانجليزي على انواع ثلاثة (غلط مشترك Common mistake ) يقع فيه الطرفان مع علم كل منهما بنية الآخر ويقبلها دون ان يشوب الاتفاق نقص او يعتريه تحفظ ، و(غلط من الجانبين Mutual mistake) يكون كل متعاقد واقعا في غلط فيما يتعلق بما قصده الآخر، فيقدم كل منهما عرضاً مخالفاً للآخر و(غلط من جانب واحدUnliteral mistake ) يقع فيه احد المتعاقدين فقط ويكون المتعاقد الآخر اما عالماً بالغلط او يفترض انه عالم به . فإذا دفع احد المتعاقدين
... Show MoreBased on nonlinear self- diffraction technique, the nonlinear optical properties of thin slice of matter can be obtained. Here, nonlinear characterization of nano-fluids consist of hybrid Single Wall Carbon Nanotubes and Silver Nanoparticles (SWCNTs/Ag-NPs) dispersed in acetone at volume fraction of 6x10-6, 9x10-6, 18x10-6 have been investigated experimentally. Therefore, CW DPSS laser at 473 nm focused into a quartz cuvette contains the previous nano-fluid was utilized. The number of diffraction ring patterns (N) has been counted using Charge - Coupled- Device (CCD) camera and Pc with a certain software, in order to find the maximum change of refractive index ( of fluids. Our result show that the fraction volume of 18x10-6 is more nonli
... Show MoreIn this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
In the current century, nanotechnology has gained great interest due to its ability to modify the size of metals to the nanoscale, which dramatically changes the physical, chemical, and biological characteristics of metals relative to their bulk counterparts. The approaches used to create nanoparticles (NPs) are physical, و chemical and وbiological. The shortcomings in physical and chemical synthesis approaches, such as the generation of toxic by-products, and energy consume as they require high temperature, pressure, power and lethal chemicals, contributed to an increased interest in biological synthesis by plants. Scientists have created a new filed called as "green nanotechnology" by fusing the idea of sustainability with nanotechno
... Show MoreMost dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreTitanium dioxide nanotubes were synthesized by anodizing Ti sheets in the ethylene glycol solution and were covered in Pt nanoparticles onto the surface of TiO2NTs using electrodeposition method from using five derivatives of Mannich base Pt complexes which have been used as precursor of platinum. The mean size, shape, elemental composition of the titanium dioxide nanotubes and platinum deposited on the template were evaluated by different techniques such as field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), and energy dispersive X-ray (EDX) technique. From all these analyses, the TiO2NTs prepared and Ptnanoparticles deposited on it were ide
... Show MoreThe Nano compound (Ba1-xSrxTiO3) as (X=0,0.26,0.28,0.30,0.32,0.34) was synthesized by using sol-gel method, the structural properties of result compound were studied by using xray diffraction test (XRD) and scanning electron microscope (SEM). the results were exhibited and by using software indexing to x-ray diffraction pattern that all prepared samples possess tetragonal phase and there is not any other phases were existed. also the substitution process didn't change the phase of compound and increase in (Sr+2) ion concentration leads to decrease lattice parameters (a,c) then the unite cell volume was decreased, as the particle size calculated from Debye-Scherrer and Williamson-Hall equations , and the calculated dens
... Show MoreThe influence of silver doped n-type polycrystalline CdTe film with thickness of 200 nm and rate deposition of 0.3 nm.s -1 prepared under high vacuum using thermal co-evaporation technique on its some structural and electrical properties was reported. The X- ray analysis showed that all samples are polycrystalline and have the cubic zinc blend structure with preferential orientation in the [111] direction. Films doping with impurity percentages (2, 3, and 4) %Ag lead to a significant increase in the carrier concentration, so it is found to change from 23.493 108 cm -3 to 59.297 108 cm -3 for pure and doped CdTe thin films with 4%Ag respectively. But films doping with impurity percentages above lead to a significant decrease in the electrica
... Show MoreIndium doped CdTe polycrystalline films of thickness equals to 300nm were grown on corning glass substrates at temperature equals to 423K by thermal co-evaporation technique. The structural and electrical properties for these films were studied as a function of heat treatment (323,373,423)K. The x-ray analysis showed that all samples are polycrystalline and have the cubic zincblende structure with preferential orientation in the [111] direction, no diffraction peaks corresponding to metallic Cd, Te or other compounds were observed. It was found that the electrical resistivity drops and the carrier concentration increases when the CdTe film doped with 1.5% indium and treated at different annealing temperatures.